

MITIGATION PLAN

FINAL

December 9, 2020

CARPENTER BOTTOM MITIGATION SITE Gaston County, NC NCDEQ Contract No. 7731 DMS ID No. 100090

Catawba River Basin HUC 03050102 (03050103 Expanded Service Area)

USACE Action ID No. SAW-2018-02062 NC DWR Project No. 2019-0049 RFQ #: 09132018 PREPARED FOR:

NC Department of Environmental Quality Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652

DRAFT MITIGATION PLAN

CARPENTER BOTTOM MITIGATION SITE

Gaston County, NC NCDEQ Contract No. 7731 DMS ID No. 100090 Catawba River Basin HUC 0305102 (03050103 Expanded Service Area)

USACE Action ID No. SAW-2018-02062

PREPARED FOR:

NC Department of Environmental Quality Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652

PREPARED BY:

Wildlands Engineering, Inc. 167-B Haywood Rd Asheville, NC 28806 Phone: (828) 774-5547

This mitigation Plan has been written in conformance with the requirements of the following:

- Federal rule for compensatory mitigation project sites as described in the Federal Register Title 33 Navigation and Navigable Waters Volume 3 Chapter 2 Section § 332.8 paragraphs (c)(2) through (c)(14).
- NCDEQ Division of Mitigation Services In-Lieu Fee Instrument signed and dated July 28, 2010.

These documents govern DMS operations and procedures for the delivery of compensatory mitigation.

Contributing Staff:

Eric Neuhaus, PE, Project Manager Shawn Wilkerson, Principal in Charge Kristi Suggs, Wetland Delineations Jordan Hessler, Mitigation Plan Development Haley Brinkley, *Mitigation Plan Development* Scott Gregory, *Mitigation Plan Development* Josh Short, El *Stream and Wetland Design* Christine Blackwelder, *Lead Quality Assurance*

DEPARTMENT OF THE ARMY WILMINGTON DISTRICT, CORPS OF ENGINEERS 69 DARLINGTON AVENUE WILMINGTON, NORTH CAROLINA 28403-1343

December 1, 2020

Regulatory Division

Re: NCIRT Review and USACE Approval of the NCDMS Carpenter Bottom Mitigation Site / Buncombe Co./ SAW-2018-02062/ NCDMS Project # 100090

Mr. Tim Baumgartner North Carolina Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652

Dear Mr. Baumgartner:

The purpose of this letter is to provide the North Carolina Division of Mitigation Services (NCDMS) with all comments generated by the North Carolina Interagency Review Team (NCIRT) during the 30-day comment period for the Carpenter Bottom Draft Mitigation Plan, which closed on October 25, 2020. These comments are attached for your review.

Based on our review of these comments, we have determined that no major concerns have been identified with the Draft Mitigation Plan, which is considered approved with this correspondence. However, several minor issues were identified, as described in the attached comment memo, which must be addressed in the Final Mitigation Plan.

The Final Mitigation Plan is to be submitted with the Preconstruction Notification (PCN) Application for Nationwide permit approval of the project along with a copy of this letter. Issues identified above must be addressed in the Final Mitigation Plan. All changes made to the Final Mitigation Plan should be summarized in an errata sheet included at the beginning of the document. If it is determined that the project does not require a Department of the Army permit, you must still provide a copy of the Final Mitigation Plan, along with a copy of this letter, to the USACE Mitigation Office at least 30 days in advance of beginning construction of the project. Please note that this approval does not preclude the inclusion of permit conditions in the permit authorization for the project, particularly if issues mentioned above are not satisfactorily addressed. Additionally, this letter provides initial approval for the Mitigation Plan, but this does not guarantee that the project will generate the requested amount of mitigation credit. As you are aware, unforeseen issues may arise during construction or monitoring of the project that may require maintenance or reconstruction that may lead to reduced credit.

Thank you for your prompt attention to this matter, and if you have any questions regarding this letter, the mitigation plan review process, or the requirements of the Mitigation Rule, please call me at 919-554-4884, ext 60.

Sincerely,

Kim Browning Mitigation Project Manager *for* Ronnie Smith, Deputy Chief USACE Regulatory Division

Enclosures

Electronic Copies Furnished:

NCIRT Distribution List Matthew Reid, Paul Wiesner—NCDMS Eric Neuhaus, Shawn Wilkerson—WEI

CESAW-RG/Browning

November 13, 2020

MEMORANDUM FOR RECORD

SUBJECT: Carpenter Bottom Mitigation Project - NCIRT Comments during 30-day Mitigation Plan Review

PURPOSE: The comments listed below were received during 30-day comment period in accordance with Section 332.8(g) of the 2008 Mitigation Rule in response to the Notice of NCDMS Mitigation Plan Review.

NCDMS Project Name: Carpenter Bottom Mitigation Site, Buncombe County, NC

USACE AID#: SAW-2018-02062 NCDMS #: 100090 30-Day Comment Deadline: October 25, 2020

USACE Comments, Kim Browning:

- 1. The ratio for the preservation area would be more appropriate as a low-level enhancement area since it is proposed for cattle exclusion and invasive treatment. The lack of a wider buffer also warrants a lower ratio. Wider buffers, measuring at least 100 feet in width, are generally required. An enhancement III ratio of 8:1 would be more appropriate for this area.
 - a. Do the buffers meet the minimum width on reach 2? They appear to be narrow in one section, especially on the eastern boundary.
- 2. Livestock exclusion is mentioned as a way to gain functional uplift throughout the plan but it's unclear how this will be accomplished without fencing, especially given the fact that multiple landowners are involved. Will existing fence on adjacent properties be the main way to exclude cattle? This seems risky for future encroachments.
- 3. Please include a veg plot in the wetland rehabilitation area near GWG 5 (wetland N).
- 4. It would be helpful to show the existing farm roads on Figure 3 since these areas will be a concern due to compaction. Please put at least one mobile veg plot in one of these areas.
- 5. Page 3: Please correct "30530.230" cool stream credits.
- 6. There is concern that wetlands may extend beyond the conservation easement, into adjacent farmland. A potential risk is that the adjacent landowner may ditch or tile the wetland adjacent to the CE.
- 7. It would be helpful to include the NCSAM/WAM results in Tables 5 and 6.
- 8. Tables 9 and 17 state that livestock fence will be installed as needed. This is inconsistent with other sections that state that fence will not be necessary because cattle will be removed.
- 9. Section 8.0: The IRT does not support terminating monitoring after 5 years. 7 years is required.
- 10. Section 8.1.1: The ER for C type streams should be no less than 2.2.

- 11. Section 8.2: Please remove the section that discusses inundation and a decreased vigor standard. If tree height is a concern during monitoring this can be addressed in an adaptive management plan. Additionally, please correct Table 17.
- 12. Section 8.5: The Corps supports benthic and water quality monitoring on this site.
- 13. Appendix 14: I'm a little confused why you ran the buffer tool and actually lost credits. It looks like the only place where you have less than 50 ft is at the end of the Carpenter Branch R2, and this appears to be less than 5% of the total length. Please confirm. By using the buffer tool you get penalized for the crossing as well.

WRC Comments, Travis Wilson:

- 1. The vegetation portion of the mitigation plan identified a target community but did not include a comprehensive list of species representative of that community. A target community species list should be included in the mitigation plan and the planting plan should reflect that list of species.
- 2. The Draft mitigation plan did not include details for the design of the culvert crossing. This information should be provided prior to the final mitigation plan in order to review adequate size, configuration, and structure type.
- 3. The target community identified should not have vast areas of inundation that would affect vigor. There may be a mosaic of depressional areas that would have longer periods of inundation potentially affecting some species vigor and that can be described in the mit plan, but I don't agree with adjusting the success criteria.

EPA Comments, Todd Bowers:

1. General:

• I would like to commend the site sponsor and landowner for protecting the headwater wetlands and streams by livestock exclusion without the need for fencing. Limiting livestock access to site streams or drainages is crucial in protecting stream stability and minimizing harm to water quality downstream.

• Recommend expanding the conservation easement to include upland buffers for the restored wetlands at the headwaters of Carpenter Branch where feasible. Some of the wetlands may extend well beyond the currently proposed conservation easement boundaries and without additional protection these wetlands may experience degradation if the adjacent aquatic resource is not protected.

• I found it very helpful to name the main tributary of the site as Carpenter Branch and not just another UT.

• I am confused on the presence/absence of fencing across the site. Correspondence and some of the mitigation plan states that fencing is not needed as all cattle will be removed by the landowners. Other parts of the document clearly state that fencing will be a site objective to meet the livestock exclusion goal. The entire document needs to be edited to provide consistency one way or another, however total cattle exclusion without the need for fencing is the preferred approach.

2. Section 4.1/Page 10:

• Recommend adding livestock exclusion as a method to provide potential functional uplift of the site wetlands.

3. Section 4.5/Page 11:

• Recommend adding livestock exclusion as a method to provide potential uplift to stream channel geomorphology.

4. Section 5.3/Page 13:

• Fencing is mentioned as method of improving the wetland function via removing livestock and will be denoted in final plans. This is adding to confusion of the presence/absence of fencing on-site.

5. Table 9/Page 15:

• Livestock fencing is listed as an objective for livestock exclusion goal. Recommend clarifying/correcting this inconsistency.

6. Section 7.1/Page 16:

• Recommend adding "decommissioning farm roads" as part of the design approach. The detailed plan sheets show these roads to be removed in detail.

• Cattle exclusion is mentioned but the method is not addressed.

7. Section 7.4/Page 20:

• Relatively low design discharge (14 cfs) justification for Carpenter Branch Reach 1 was noted.

8. Section 7.6 /Pages 23-24:

• Livestock exclusion along entire reach of Carpenter Branch, UTs and headwater wetlands is mentioned but the method remains unknown.

9. Section 7.7.3/Page 25:

• EPA appreciates the breadth and timing of the six groundwater gauges installed as well as the data included to confirm presence/absence of potential wetland hydrology in the locations proposed for wetland restoration. This is excellent baseline data that clearly demonstrates the potential of this site to provide quality wetland function.

10. Section 7.8/Page 28:

• Recommend moving the last date for planting to be no later than April 15. This gives a twoweek buffer period to properly conduct a vegetation survey that should be completed by November 1 of MY1. Giving a six-week extension to the planting season also unnecessarily increases the risk of mortality for first year bare-root seedlings and saplings so I highly recommend that Wildlands avoid going beyond March 15 as little as possible.

11. Section 8.2/Page 30:

• Recommend adding November 1 as last date for vegetation sampling.

• Recommend adding the estimated number of vegetation plots in total and in the three planing zones to be monitored for performance. Please update the monitoring figure to include all planting zones (wetland re-habilitation zone does not appear to be monitored in Figure 10).

12. Section 8.5/Page 31:

• Wildlands has stated in correspondence that are not seeking the bonus credit from water quality monitoring but this is an excellent site to demonstrate uplift since much of the headwaters are encompassed and there is a high quality area (CB preservation) that is a good source for benthic macroinvertebrates to move upstream/migrate from. An extra 2-4% of stream credits may offset those lost to less than 50-foot width riparian buffers.

13. Table 17/Page 30:

• Inconsistent approach to cattle exclusion (fencing) is listed as an objective here.

14. Section 10/Page 35:

• No livestock, fencing or crossings are proposed for the project. Clarify if necessary but I believe this is the preferred approach according to correspondence from Wildlands.

15. Section 12/Page 36:

• Add language to address the potential for water quality sampling and the additional potential credits that may be generated by such action if pursued.

16. Planting Plans:

• Add the wetland indicator status for each species proposed for planting in the wetland zones.

• Recommend adding alternative species that may be considered if the primary chosen species are not available at the time of planting in either the riparian or wetland zone.

DWR Comments, Erin Davis:

- 1. Page 5, Section 3.2 DWR appreciates that Gaston County planning documents were reviewed for this plan.
- 1. Page 7, Section 3.4 Please reference NCSAM ratings and include the assessment and scoring sheets in the appropriate appendix.

- 2. Page 15, Table 9 (also Page 32, Table 17) Based on the response to DMS comments, fence installation is not proposed for this project. Please update objective descriptions in both tables.
- 3. Page 24, Section 7.7 Please confirm whether a total of 8.8 acres or 10.2 acres (page 3) of historically altered wetlands are proposed to be restored.
- 4. Pager 25, Section 7.7.2 The soil investigation notes the depth to hydric indicators is less than 10 inches onsite. Is grading proposed within wetland credit areas? If so, will any of these areas be graded beyond than 12 inches?
- 5. Page 26, Section 7.7.3 Section 8.3 lists the performance standard hydroperiod based on the IRT 2016 guidance. However, based on the pre-construction baseline site data and reference wetland data, what is the designed target hydroperiod (range) for the proposed wetland community?
- 6. Page 28, Section 7.8
 - a. This section only mentions planting early successional species. DWR would like to see a mix of early successional native species and appropriate climax species based on the designated target community.
 - b. It is noted that ripping may be performed in haul road and stockpile areas, but of specific compaction concern to this project is the decommissioning of farm roads that crisscross the easement both in wetland and stream buffer areas.
- 7. Page 28, Section 7.9 If cattle will be removed fully from the properties by the property owners as mentioned in the response to DMS comments, then please identify the primary use for the proposed culvert crossing. Will it still function as an agriculture crossing?
- 8. Page 30, Section 30 DWR does not support the requested reduced vigor standard due to inundation without additional information. Based on your modeling and reference wetland data, what is the expected inundation period? If the inundation period is expected to be long enough to stunt vegetation growth, shouldn't this also be reflected in the target hydroperiod duration performance criteria? A request for a reduced vigor standard may be a more appropriate discussion during adaptive management planning, unless the proposed wetland restoration is designed to have prolonged inundation based on the wetland target and reference community(s).
- 9. Page 31, Section 8.5 DWR supports benthic and water quality monitoring at this site.
- 10. Page 33, Table 17 See DWR comment #8 regarding vigor. Also, please provide more information about the shaded plantings. Is supplemental understory/shrub planting proposed? If so, please distinguish supplemental planting areas from full planting areas on a figure or design sheet.
- 11. Page 34, Table 18 Please add a stream gauge on UT2, as mentioned in Section 8.1.3.
- 12. Page 35, Section 10 In an effort to reduce the risk of encroachment, signage spacing and visibility will be important given all bends/corners along the proposed CE and multiple property owners.
- 13. Figure 10
 - a. DWR requests the flow gauges on UT 3 and Carpenter Branch be shifted upstream near the proposed photo points (approximately two-thirds the way upstream of the confluence).
 - b. Please shift a permanent veg plot from the wetland re-establishment area to the wetland rehabilitation area.
 - c. DWR requires a minimum of one additional groundwater gage. Please place the additional gage near the wetland re-establishment/rehabilitation line east of UT2. DWR requests an additional groundwater gage near the right bank photo point along Carpenter Branch. It appears that of the originally proposed nine gages, six are located approximately 50 feet from the easement boundary. DWR requests that at least half of the total gages be placed within 50 feet of the easement boundary, since this is the area DWR is most concerned with meeting the minimum hydroperiod performance standard.
 - d. Please include a photo point at the proposed crossing.

- e. Please add a note regarding the four random veg plots to be monitored.
- f. Please show or note that photo points will be taken at cross sections, veg plots and gauge locations.
- 14. Sheet 2.1.1 It would help our review to see the existing channel areas proposed to be filled as a shaded feature on the plan view sheets, or for callouts be added. If ditch/channel plugs area proposed, please identify the approximate locations. Also, please provide detail(s) for ditch/channel filling and plugs.
- 15. Sheet 2.1.5 Please call out culvert removals and show proposed culvert and easement break lines on profiles.
- 16. Sheet 2.4.1
 - a. Will the pipe above the proposed BMP be removed?
 - b. What is the adjacent 50-ft existing easement line for?
- 17. Sheet 3.0 Please confirm that the structure entering CE from west will be removed; please add a callout identifying what it is.
- 18. Sheet 4.0
 - a. DWR understands that quantity substitutions may be necessary based on the nursery's species available. However, we request that no species (excluding live stakes) account for more than 20 percentage of a specified planting zone in order to promote diversity within the designated community type.
 - b. It would be helpful for our review to have the wetland indicator status included in the tables.
- 19. Sheet 6.1 Rock sill DWR does not support seeding banks with pearl millet or fescue.
- 20. Sheet 6.7 Based on the material size it appears that the "rock toe" will be a riprap toe. Please explain why this stabilization treatment is proposed rather than a stone/boulder toe for the four stream bank areas called out.
- 21. Sheet 6.2 DWR likes the level of detail provided for the vernal pool typical, including the LWD callout.
 - a. Please consider a max. depth of 14 inches if a pool isn't expected to seasonally dry at 18 inches.
 - b. Were options evaluated to create a stable connection between pool and stream without adding riffle material? Please callout riffle material size.
 - c. No vernal pools were called out on plan view sheets, if the proposed locations are to be determined during construction please make sure to include callouts on the redline record drawings.
- 22. Appendix 7 In future project plans, DWR would request at least 1-2 additional representative boring logs be provided based on the wetland credit area proposed and landscape features.
- 23. Appendix 13 The IRT meeting minutes mentioned the possibility of extending the CE width along a section of Carpenter Branch. What happened to this discussion?

Kim Browning Mitigation Project Manager Regulatory Division

December 9, 2020 ATTN: CESAW-RG/Browning Ms. Kim Browning US Army Corps of Engineers – Wilmington District 69 Darlington Avenue Wilmington, NC 28403-1343

RE: Carpenter Bottom Mitigation Site Gaston County, NC Response to NCIRT Comments during 30-day Mitigation Plan Review USACE Action ID No: SAW-2018-02062 DWR Project ID: 7731 NCDMS Project No: 100090

Dear Ms. Browning:

Wildlands Engineering, Inc. (Wildlands) has reviewed DWR's, NCWRC's, USACE's, and US EPA's comments from the Carpenter Bottom Mitigation Plan package. Wildlands responses to DWR's, NCWRC's, USACE's, and USEPA's comments are outlined below.

USACE Comments, Kim Browning comments received November 13, 2020:

 The ratio for the preservation area would be more appropriate as a low-level enhancement area since it is proposed for cattle exclusion and invasive treatment. The lack of a wider buffer also warrants a lower ratio. Wider buffers, measuring at least 100 feet in width, are generally required. An enhancement III ratio of 8:1 would be more appropriate for this area.

Wildlands Response: Wildlands updated the proposed approach and associated credits for Carpenter Branch Reach 2 to Enhancement III at an 8:1 mitigation ratio. Affected sections of the mitigation plan including Section 12 and Table 20 were updated to reflect the change in approach and crediting.

a. Do the buffers meet the minimum width on reach 2? They appear to be narrow in one section, especially on the eastern boundary.

Wildlands Response: The riparian buffers along Carpenter Branch Reach 2 meet the required 50-foot minimum outside the portion of the reach between station 126+53 to 127+77. This length of the reach does not have the required 50-foot buffer along the left bank based on property limitations. Wildlands updated the mitigation plan and associated materials to show this portion of Carpenter Branch Reach 2 as not for credit. This portion of Carpenter Reach 2 will be within the conservation easement and treated as part of the project however, based on the limited buffer, no credit is proposed.

2. Livestock exclusion is mentioned as a way to gain functional uplift throughout the plan but it's unclear how this will be accomplished without fencing, especially given the fact that multiple landowners are involved. Will existing fence on adjacent properties be the main way to exclude cattle? This seems risky for future encroachments.

Wildlands Response: The project parcels, while owned by multiple family members, were previously leased to a single tenant farmer for cattle. The property owners plan to terminate the lease and require livestock to be removed prior to project construction. Therefore, cattle exclusion will be achieved via removal of livestock which will provide ecological uplift to project streams and wetlands. All property owner option agreements include language which clearly states that livestock must be removed, or fencing must be installed to exclude livestock. The property owners have chosen to remove the livestock. As noted in Section 10.0 and Table 19 of the mitigation plan "If land use changes in the future and fencing is required to protect the easement, the landowner is responsible for installing appropriate approved fencing."

3. Please include a veg plot in the wetland rehabilitation area near GWG 5 (wetland N).

Wildlands Response: A permanent Vegetation plot was added to wetland rehabilitation areas within wetlands I & N. A mobile plot will be located in wetland M during monitoring. These changes can be seen on the revised Figure 10.

4. It would be helpful to show the existing farm roads on Figure 3 since these areas will be a concern due to compaction. Please put at least one mobile veg plot in one of these areas.

Wildlands Response: The existing farm roads are dirt trails which are currently used primarily for ATV and foot traffic. They will be decommissioned during construction by ripping as deemed necessary in the field to reduce soil compaction. The existing farm roads have been added to Figure 3. A mobile vegetation plot was added to Figure 10 in the location of one of the existing farm roads.

5. Page 3: Please correct "30530.230" cool stream credits.

Wildlands Response: The total stream credit was revised to 3,067.849 credits to correct the error in the comment above and update the project crediting based on revisions documented within this comment response letter.

6. There is concern that wetlands may extend beyond the conservation easement, into adjacent farmland. A potential risk that the adjacent landowner may ditch or tile the wetland adjacent to the CE.

Wildlands Response: Wildlands acknowledges that portions of the jurisdictional wetland features extend outside of the conservation easement, however, real estate and farm infrastructure limitations prevent these areas from being included within the conservation easement. Wildlands captured as much jurisdictional wetland as possible within the conservation easement and no crediting is proposed for areas outside of the conservation easement.

7. It would be helpful to include the NCSAM/WAM results in Tables 5 and 6.

Wildlands Response: The NCSAM/WAM rating were added to Tables 5 and 6.

8. Tables 9 and 17 state that livestock fence will be installed as needed. This is inconsistent with other sections that state that fence will not be necessary because cattle will be removed.

Wildlands Response: See response to USACE comment #2 regarding livestock exclusion. Tables 9 and 17 were reviewed and proposed fencing references were removed. Livestock exclusion discussion was left within the tables, as livestock exclusion is still a method of uplift being performed in project streams and wetlands.

9. Section 8.0: The IRT does not support terminating monitoring after 5 years. 7 years is required.

Wildlands Response: The language in section 8.0 was updated to reflect a 7-year monitoring period.

10. Section 8.1.1: The ER for C type streams should be no less than 2.2.

Wildlands Response: The statement in section 8.1.1 was corrected to say "entrenchment ratios must be no less than 2.2 at any measured riffle cross section".

11. Section 8.2: Please remove the section that discusses inundation and a decreased vigor standard. If tree height is a concern during monitoring this can be addressed in an adaptive management plan. Additionally, please correct Table 17.

Wildlands Response: The discussion within Section 8.2 and Table 17 regarding decreased vigor standard has been removed. Text within Section 8.2 was updated to read:

"Given inundation periods anticipated for areas proposed for wetland restoration, woody vegetation growth may be hindered resulting in stunted tree heights. If monitored vegetation data does not meet the required vigor outlined above, tree height and vigor will be evaluated and discussed within monitoring reports and adaptive management plans, as necessary."

12. Section 8.5: The Corps supports benthic and water quality monitoring on this site.

Wildlands Response: Wildlands recognizes that ACOE supports further water quality monitoring for the proposed crediting bonus of 2% to 4%, however, given project timelines, a narrow construction window, and the additional steps that would be required to implement the water quality monitoring (additional DMS and IRT reviews) it was determined that pursuing the additional credit bonus could not be achieved within the existing project schedule.

While the credit bonus will not be pursued, Wildlands does plan to include the Carpenter Bottom Mitigation Site in our current development of data for research of water quality. Preconstruction sampling will be performed, as well as 2, 5, and 7-year sampling post construction. For this independent research, NC Qual 4 sampling methodology from the NC Standard Operating Procedures for the Collection and Analysis of Benthic Macroinvertebrates (February 2016) is followed. Water quality data including DO, pH, temperature, and conductivity is also collected and the NC Benthic Habitat Assessment Form is completed. Wildlands can provide this data to NCDMS and the NCIRT for information, despite the credit bonus not being pursued. 13. Appendix 14: I'm a little confused why you ran the buffer tool and actually lost credits. It looks like the only place where you have less than 50 ft is at the end of the Carpenter Branch R2, and this appears to be less than 5% of the total length. Please confirm. By using the buffer tool you get penalized for the crossing as well.

Wildlands Response: Wildlands updated the mitigation plan and proposed crediting, removing credit along Carpenter Branch Reach 2 between stations 126+53 to 127+77 due to limited buffer along the left bank. By reducing proposed crediting along this portion of Carpenter Branch Reach 2, the proposed credited stream length with less than the required 50-foot buffer is below the 5% benchmark, eliminating the need to run the Wilmington District Stream Buffer Credit Calculator. As such, language around the Wilmington District Stream Buffer Credit Calculator and Appendix 14 showing the calculation results were removed from the mitigation plan.

WRC comments, Travis Wilson comments received November 13, 2020:

1. The vegetation portion of the mitigation plan identified a target community but did not include a comprehensive list of species representative of that community. A target community species list should be included in the mitigation plan and the planting plan should reflect that list of species.

Wildlands Response: Wildlands made significant changes to the species planting list and supplemental planting areas. Planting edits were made due to comments received from the IRT, changes in the stream profile outlined below, and previous communication with the IRT regarding implementing more site-specific planting plans. In Section 7.7 there are three target communities and specific canopy and subcanopy plant species found within these plant communities. Canopy and subcanopy species were selected based on these plant communities, observation of occurrence of species in riparian buffers adjacent to the site, availability of nursery stock, and best professional judgement.

2. The DRAFT mitigation plan did not include details for the design of the culvert crossing. This information should be provided prior to the final mitigation plan in order to review adequate size, configuration, and structure type.

Wildlands Response: As noted in the NCDMS comments and responses, detailed culvert information is not typically included with Mitigation Plan submittals. This level of design is typically implemented after IRT Mitigation Plan approval as the project moves toward construction. The proposed culvert crossing is currently anticipated as a 49" x 33" arched CMP pipe which will pass a little over three times the estimated bankfull discharge. The proposed arched CMP will be imbedded below stream bed grade a minimum of 6" to facilitate aquatic organism passage at the Site.

3. The target community identified should not have vast areas of inundation that would affect vigor. There may be a mosaic of depressional area that would have longer periods of inundation potentially affecting some species vigor and that can be described in the mit plan, but I don't agree with adjusting the success criteria. **Wildlands Response:** See response to ACOE Comment #11 regarding the alteration of the standard vigor success criteria being removed from the plan.

EPA comments, Todd Bowers comments received November 16, 2020:

- 1. General:
 - I would like to commend the site sponsor and landowner for protecting the headwater wetlands and streams by livestock exclusion without the need for fencing. Limiting livestock access to site streams or drainages is crucial in protecting stream stability and minimizing harm to water quality downstream

Wildlands Response: The headwater wetland complex at the Carpenter Bottom Mitigation Site is a unique ecological resource and Wildlands is excited for the opportunity to protect the asset in perpetuity.

• Recommend expanding the conservation easement to include upland buffers for the restored wetlands at the headwaters of Carpenter Branch where feasible. Some of the wetlands may extend well beyond the currently proposed conservation easement boundaries and without additional protection these wetlands may experience degradation if the adjacent aquatic resource is not protected.

Wildlands Response: Wildlands negotiated the maximum possible conservation easement with the property owners and is providing the minimum required buffers as outlined in the Wilmington District Mitigation Guidance.

• I found it very helpful to name the main tributary of the site as Carpenter Branch and not just another UT.

Wildlands Response: Wildlands will consider continuing this project naming methodology on future submittals if it facilitates project communication.

• I am confused on the presence/absence of fencing across the site. Correspondence and some of the other mitigation plan states that fencing is not needed as all cattle will be removed by the landowners. Other parts of the document clearly stat that fencing will be a site objective to meet the livestock exclusion goal. The entire document needs to be edited to provide consistency one way or another, however total cattle exclusion without the need for fencing is the preferred approach.

Wildlands Response: See response to USACE comment #2 regarding livestock exclusion. The document has been reviewed to remove confusion around livestock exclusion and fencing. Total cattle exclusion without the need for fencing is the approach proposed within the mitigation plan.

2. Section 4.1/Page 10: Recommend adding livestock exclusion as a method to provide potentially functional uplift of the site wetlands.

Wildlands Response: Text was added to Section 4.1 identifying cattle exclusion as a method of functional uplift.

3. Section 4.5/Page 11: Recommend adding livestock exclusion as a method to provide potential uplift to stream channel geomorphology.

Wildlands Response: Text was added to Section 4.5 identifying cattle exclusion as a method of functional uplift.

4. Section 5.3/Page 13: Fencing is mentioned as method of improving the wetland function via removing livestock and will be denoted in final plans. This is adding to confusion of the presence/absence of fencing on-site.

Wildlands Response: Text within Section 5.3 was updated to read: "Generally, existing wetlands will be improved by planting native vegetation and excluding livestock via removal."

5. Table 9/Page 15: Livestock fencing is listed as an objective for livestock exclusion goal. Recommend clarifying/correcting this inconsistency.

Wildlands Response: Table 9 was updated to reflect cattle removal from the Site as the objective for livestock exclusion.

- 6. Section 7.1/Page 16:
 - Recommend adding "decommissioning farm roads" as part of the design approach. The detailed plan sheets show these roads to be removed in detail.

Wildlands Response: The existing farm roads are relic dirt ATV trails and farm paths that will be decommissioned during construction by ripping to reduce soil compaction as deemed necessary based on field conditions. Wildlands doesn't consider the roughening and planting of these farms paths as a major component of the design approach; therefore, Section 7.1 was not updated.

• Cattle exclusion in mentioned but the method is not addressed.

Wildlands Response: Text was edited within Section 7.1 to read: "Cattle will be excluded from the entire project area via removal, eliminating wallow areas within the headwater streams and wetlands."

7. Section 7.4/Page 20: Relatively low design discharge (14 cfs) justification for Carpenter Branch Reach 1 was noted.

Wildlands Response: No response required.

8. Section 7.6/Pages 23-24: Livestock exclusion along entire reach of Carpenter Branch, UTs, and headwater wetlands is mentioned but the method remains unknown.

Wildlands Response: See response to USACE comment #2 regarding livestock exclusion methods. Livestock exclusion and anticipated methods have been added to multiple locations throughout the report (Sections 4.1, 5.3, 6.0 and 7.1). Cattle exclusion is noted throughout

Section 7.6 as a method of project implementation, exclusion method is not relevant to the project uplift.

9. Section 7.7.3/Page 25: EPA appreciates the breadth and timing of six groundwater gauges installed as well as the data included to confirm presence/absence of potential wetland hydrology in the locations proposed for wetland restoration. This is excellent baseline data that clearly demonstrates the potential of this site to provide quality wetland function.

Wildlands Response: No response required.

10. Section 7.8/Page 28: Recommend moving the last date for planting to be no later than April 15. This gives a two-week buffer period to properly conduct a vegetation survey that should be completed by November 1 of MY1. Giving a six-week extension to the planting season also unnecessarily increases the risk of mortality for first year bare-root seedlings and saplings so I highly recommend that Wildlands avoid going beyond March 15 as little as possible.

Wildlands Response: The last date for planting listed in Section 7.8 was updated to April 15th. Planting will only be performed beyond March 15th in extenuating circumstances and plantings will be monitored for survivability.

- 11. Section 8.2/Page 30:
 - Recommend adding November 1 as last date for vegetation sampling.

Wildlands Response: Wildlands added November 1st as the last date for vegetation sampling in Section 8.2.

• Recommend adding the estimated number of vegetation plots in total and in the three planting zones to be monitored for performance. Please update the monitoring figure to include all planting zones (wetland re-habilitation zone does not appear to be monitored in Figure 10).

Wildlands Response: Wildlands updated the monitoring figure to include vegetation plots in the wetland rehabilitation zone. Section 8.2 was updated to reflect the number of vegetation monitoring plots in each planting zone.

12. Section 8.5/Page 31: Wildlands has stated in correspondence that are not seeking the conus credit from water quality monitoring but this is an excellent site to demonstrate uplift since much of the headwaters are encompassed and there is a high quality area (CB preservation) that is a good source for benthic macroinvertebrates to move upstream/migrate from. An extra 2-4% of stream credits may offset those lost to less than 50-foot width riparian buffers.

Wildlands Response: See response to USACE comment #12 regarding additional benthic and water quality monitoring at the Site.

13. Table 17/Page 30: Inconsistent approach to cattle exclusion (fencing) is listed as an objective here.

Wildlands Response: Table 17 was updated to remove the inconsistency regarding fencing. See response to USACE comment #2 for details on livestock exclusion.

14. Section 10/Page 35: No livestock, fencing or crossings are proposed for the project. Clarify if necessary but I believe this is the preferred approach according to correspondence from Wildlands.

Wildlands Response: No livestock fencing is proposed, see response to USACE comment #2 for details on livestock exclusion. One existing culvert crossing required for property owner access will be replaced as part of the project.

15. Section 12/Page 36: Add language to address the potential for water quality sampling and the additional potential credits that may be generated by such action if pursued.

Wildlands Response: See response to USACE comment #12 regarding additional benthic and water quality monitoring at the Site.

- 16. Planting Plans:
 - Add the wetland indicator status for each species proposed for planting in the wetland zones.

Wildlands Response: Wildlands added the wetland indicator statues for all plant species.

• Recommend adding alternative species that may be considered if the primary chosen species are not available at the time of planting in either the riparian or wetland zone.

Wildlands Response: Alternate species have been added to the proposed planted species list on design sheet 4.0.

DWR comments, Erin David comments received November 13, 2020:

1. Page 5, Section 3.2 – DWR appreciates that Gaston County planning documents were reviewed for this plan.

Wildlands Response: Wildlands attempts to locate all available planning documents that may be relevant to the existing and future project conditions.

1. Page 7, Section 3.4 – Please reference NCSAM ratings and include the assessment and scoring sheet in the appropriate appendix.

Wildlands Response: The NCSAM ratings are now included in Appendix 4. The language in Section 3.4 was updated to reference NCSAM ratings sheets in Appendix 4.

2. Page 15, Table 9 (also Page 32, Table 17) – Based on the response to DMS comments, fence installation is not proposed for this project. Please update objective descriptions in both tables.

Wildlands Response: Inconsistencies in cattle exclusion approach within Table 9 and Table 17 have been clarified within the report based on comments from ACOE (comment #2) and EPA (comments #5 and #13).

3. Page 24, Section 7.7 – Please confirm whether a total of 8.8 acres or 10.2 acres (page 3) of historically altered wetlands are proposed to be restored.

Wildlands Response: The site proposes to restore 9.661 acres of historically altered wetlands. This was updated throughout the report.

4. Page 25, Section 7.7.2 – The soil investigation notes the depth to hydric indicators is less than 10 inches onsite. Is grading proposed within wetland credit areas? If so, will any of these areas be graded beyond 12 inches?

Wildlands Response: No grading is proposed within the wetland restoration areas beyond what is required to fill existing ditches and built headwaters of site streams. No areas of proposed grading are deeper than 12 inches.

5. Page 26, Section 7.7.3 – Section 8.3 lists the performance standard hydroperiod based on the IRT 2016 guidance. However, based on the pre-construction baseline site data and reference wetland data, what is the designed target hydroperiod (range) for the proposed wetland community?

Wildlands Response: The designed minimum target hydroperiod for the wetland restoration areas is 16% of the identified growing season. Maximum anticipated inundation periods are not estimated as part of wetland restoration design. Baseline and reference wetland data are used as resources but are also heavily influenced by weather patterns and cannot be considered as representative of all potential years of wetland hydrology.

- 6. Page 28, Section 7.8
 - a. This section only mentions planting early successional species. DWR would like to see a mix of early successional native species and appropriate climax species based on the designated target community.

Wildlands Response: Language referencing early successional species was removed from Section 7.8. Plants are selected based on designated target communities. More in depth descriptions of these plant communities can be found in section 7.8. Please see response to WRC comments #1 for further details.

b. It is noted that ripping may be performed in haul road and stockpile areas, but of specific compaction concern to this project is the decommissioning of farms roads that crisscross the easement both in wetland and stream buffer areas.

Wildlands Response: See response to EPA comment #6 regarding existing farm paths.

7. Page 28, Section 7.9 – If cattle will be removed fully from the properties by the property owners as mentioned in the response to DMS comments, then please identify the primary use for the proposed culvert crossing. Will it still function as an agricultural crossing?

Wildlands Response: See response to USACE comment #2 regarding livestock exclusion. The primary use for the proposed culvert crossing will be to access the west section of the parcel

that has been divided by the conservation easement. This proposed culvert crossing is the only access point to this section of parcel.

8. Page 30, Section 30 – DWR does not support the requested reduced vigor standard due to inundation without additional information. Based on your modeling and reference wetland data, what is the expected inundation period? If the inundation period is expected to be long enough to stunt vegetation growth, shouldn't this also be reflected in the target hydroperiod duration performance criteria? A request for a reduced vigor standard may be a more appropriate discussion during adaptive management planning, unless the proposed wetland restoration is designed to have prolonged inundation based on the wetland target and reference community(s).

Wildlands Response: See response to ACOE Comment #11 regarding the alteration of the standard vigor success criteria being removed from the plan.

9. Page 31, Section 8.5 – DWR supports benthic and water quality monitoring at this site.

Wildlands Response: See response to USACE comment #12 regarding additional benthic and water quality monitoring at the Site.

10. Page 33, Table 17 – See DWR comment #8 regarding vigor. Also, please provide more information about the shaded plantings. Is supplemental understory/shrub planting proposed? If so, please distinguish supplemental planting area from full planting areas on figure or design sheet.

Wildlands Response: Wildlands updated the planting plan to include a species list for supplemental planting areas. The proposed supplemental planting areas are shown on the revised Figure 11 and within the revised Preliminary Design Plans included in Appendix 8 (Sheets 4.0-4.4).

11. Page 34, Table 18 – Please add a stream gauge on UT2, as mentioned in Section 8.1.3.

Wildlands Response: A stream gauge was added to UT2. Table 18 and Figure 10 were updated accordingly.

12. Page 35, Section 10 – In an effort to reduce the risk of encroachment, signage spacing and visibility will be important given all bends/corners along the proposed CE and multiple property owners.

Wildlands Response: The conservation easement will be marked according to the latest guidance and with intention to provide a clear boundary for the property owners. Wildlands Land Stewardship Team will maintain signage and will visit the Site several times throughout the year to confirm markings.

- 13. Figure 10
 - a. DWR requests the flow gauges on UT3 and Carpenter Branch be shifted upstream near the proposed photo points (approximately two-thirds the way upstream of the confluence).

Wildlands Response: Flow gauges on UT3 and Carpenter Branch were shifted upstream. See new placement on the revised Figure 10.

b. Please shift a permanent veg plot from the wetland re-establishment area to the wetland rehabilitation area.

Wildlands Response: See response to USACE comment #3 regarding vegetation plots.

c. DWR requires a minimum of one additional groundwater gage. Please place the additional gage near the wetland re-establishment/rehabilitation line east of UT2. DWR requests an additional groundwater gage near the right bank photo point along Carpenter Branch. It appears that of the originally proposed nine gages, six are located approximately 50 feet from the easement boundary. DWR requests that at least half of the total gages be placed within 50 feet of the easement boundary, since this is the area DWR is most concerned with meeting the minimum hydroperiod performance standard.

Wildlands Response: Two additional groundwater monitoring gages were added to Figure 10 and Table 18 (11 groundwater gages for less than 10 acres of proposed wetland). The sites wetland hydrology will be represented by eleven wetland gages with six of them placed approximately 50 feet from the easement boundary for post construction monitoring.

d. Please include a photo point at the proposed crossing.

Wildlands Response: A photo point was added at the proposed crossing. Figure 10 and Table 18 were revised accordingly.

e. Please add a note regarding the four random veg plots to be monitored.

Wildlands Response: The four random vegetation plots were added to Figure 10.

f. Please show or note that photo points will be taken at cross sections, veg plots and gauge locations.

Wildlands Response: A note added to Figure 10 indicating that photo points will be taken at cross sections, veg plots and gauge locations.

14. Sheet 2.1.1 – It would help our review to see the existing channel areas proposed to be filled as a shaded feature on the plan view sheets, or for callouts to be added. If ditch/channel plugs area proposed, please identify the approximate locations. Also, please provide detail(s) for ditch/channel filling and plugs.

Wildlands Response: The Preliminary Design Plans were updated to include a hatch for existing drainage features which will be filled (Sheets 2.1.1 - 3.0). Proposed ditch plugs locations and an associated detail were added to the Preliminary Design Plans (Sheets 3.0 and Sheet 6.1).

15. Sheet 2.1.5 – Please call out culvert removals and show proposed culvert and easement break lines on profiles.

Wildlands Response: Callouts are now shown on the profiles where existing culverts are to be removed. Proposed culverts are now shown on the profiles.

16. Sheet 2.4.1 -

- a. Will the pipe above the proposed BMP be removed?
 Wildlands Response: Wildlands plans to decommission the existing farm trail and remove the existing culvert above the proposed BMP. The resulting swale will be stabilized to drain to the BMP. A callout has been added to the plan sheets.
- b. What is the adjacent 50-ft existing easement line for?

Wildlands Response: The easement outside the project area shown on Sheet 2.4.1 is an access easement outside the conservation easement which is required based on the parcel locations (setback from existing street frontage) and associated access requirements.

17. Sheet 3.0 – Please confirm that the structure entering CE from west will be removed; please add a callout identifying what it is.

Wildlands Response: A callout was added to Sheet 3.0 to remove the existing rip rap outlet within the conservation easement.

18. Sheet 4.0 -

a. DWR understands that quantity substitutions may be necessary based on the nursery's species available. However, we request that no species (excluding live stakes) account for more than 20 percentage of a specified planting zone in order to promote diversity within the designated community type.

Wildlands Response: Wildlands will do our best to ensure that no species account for more than 20 percent of a specified planting zone. However, as noted above, plantings greatly depend on quantity and availability of bare root species. While availability does depend on the nursery, seasonal effects including weather can heavily contribute to plant availability, even when sourcing from multiple nurseries.

b. It would be helpful for our review to have the wetland indicator status included in the tables.

Wildlands Response: Wildlands added the wetland indicator status for all proposed plant species in wetland zones on Sheet 4.0.

19. Sheet 6.1 – Rock sill – DWR does not support seeding banks with pearl millet or fescue.

Wildlands Response: Language within Detail 3 on Sheet 6.1 was updated to: "Banks shall be raked, seeded with temporary and riparian seed mixes shown on Sheet 4.0, amended with fertilized as needed, and then matted over with 700G erosion control matting."

20. Sheet 6.7 – Based on the material size it appears that the "rock toe" will be a riprap toe. Please explain why this stabilization treatment is proposed rather than a stone/boulder toe for the four stream bank areas called out.

Wildlands Response: Wildlands considered boulder toe as an alternative to rock toe, but ultimately decided to propose rock toe due to stream dimensions, design discharge, and structure intent. Riprap proposed for the rock toe is large material consisting of an equal part mix of Class 1 (8" midrange) and Class B (10" midrange) riprap. It is Wildlands experience that the smaller material is better suited for installation on streams with smaller dimensions and will allow for better vegetation of banks in the future when compared to large boulders.

- 21. Sheet 6.2 DWR likes the level of detail provided for the vernal pool typical, including the LWD callout.
 - a. Please consider a max. depth of 14 inches if a pool isn't expected to seasonally dry at 18 inches.

Wildlands Response: Wildlands has decided to change the terminology of "Vernal Pools" to "Floodplain Pools" to better represent the hydrologic conditions on-site. Wildlands reduced the maximum depth of floodplain pools shown in Detail 1, on Sheet 6.2 to 14 inches.

b. Were options evaluated to create a stable connection between pool and stream without adding riffle material? Please callout riffle material size.

Wildlands Response: Wildlands will consider alternative options for outlet stabilization during construction based on field conditions.

c. No vernal pools were called out on plan view sheets, if the proposed locations are to be determined during construction please make sure to include callouts on the redline record drawings.

Wildlands Response: Floodplain pool locations will be determined during construction and will be surveyed during the as-built. Locations of floodplain pools will be included with the Record Drawings.

22. Appendix 7 – In future project plans, DWR would request at least 1-2 additional representative boring logs be provided based on the wetland credit area proposed and landscape features.

Wildlands Response: The number of representative boring logs is based on observed soil types at the site by the Licensed Soil Scientist (LSS). The LSS determines the number of soil types and bases the number of boring logs on these observed soils. More boring logs can be provided, but given that the boring logs are representative, but they may contain duplicate information.

23. Appendix 13 – The IRT meeting minutes mentioned the possibility of extending the CE width along a section of Carpenter Branch. What happened to this discussion?

Wildlands Response: Wildlands pursued the additional conservation easement area west of the proposed conservation easement along the right floodplain of Carpenter Branch as indicated in the meeting minutes. Unfortunately, the property owners declined including this area within the conservation easement.

In addition to the revisions performed based on the above comments. Between NCDMS approval and NCIRT comment receipt, Wildlands was able to obtain signed permissions from the adjacent property owner upstream of UT4 to allow for backwater to occur within the existing channel top of banks off the project property. Receiving the signed permissions allowed Wildlands to raise the bankfull profile of Carpenter Branch Reach 1 by 1.0 to 1.5 feet between approximate proposed stations 106+50 and 118+00. Based on the bankfull revision, this portion of Carpenter Branch previously proposed for a priority 2 restoration approach will be built more like a priority 1 stream restoration which will allow for better floodplain connection and better potential vegetation conditions. Updates to the proposed profile can be seen in Sheets 2.1.2 thru 2.1.5 of the revised preliminary design plans included in Appendix 8. Additionally, Sections 4.9 and 5.2 of the mitigation plan which discuss potential hydrologic trespass and site constraints were updated to reflect this change. Wildlands considers this profile revision an improvement in site design and believes the priority 1 restoration approach will provide better stability and vegetation conditions at the site long term.

Hard copies of the Final Mitigation Plan package can be provided upon request. Please contact me at (865) 207-8835 if you have any questions.

Sincerely,

Ja plas

Eric Neuhaus, PE Project Manager eneuhaus@wildlandseng.com

ROY COOPER Governor MICHAEL S. REGAN Secretary TIM BAUMGARTNER Director

August 31, 2020

Mr. Eric Neuhaus, PE Wildlands Engineering, Inc. 167-B Haywood Road Asheville, N.C. 28806

Subject:Draft Mitigation Plan for the Carpenter Bottom Mitigation Site Catawba River Basin – CU# 03050102 Gaston County DMS Project ID No. 100090 Contract # 7731

Dear Mr. Neuhaus:

On July 28, 2020, the Division of Mitigation Services (DMS) received the draft mitigation plan for the Carpenter Bottom Mitigation Site from Wildlands Engineering, Inc. (WEI).

The report establishes the proposed mitigation activities on the project site. Anticipated mitigation on the site includes 3,051 Stream Mitigation Units and 8.345 Wetland Mitigation Units. The following are our comments on the draft mitigation plan report and preliminary plan set:

Title Page:

• Please include the 401 permit number if available.

Introduction:

• Stream credits and wetland credits do not match Table 20. Please update for final to match revised asset table.

Table 1:

• Suggest reporting location in decimal degrees.

3.2 Land Use/Land Cover:

• Please indicate the approximate acreage of forest cleared between 2012 and 2016.

3.3 Existing Vegetation:

• The Land Use/Land Cover section describes the site as being maintained as active cattle and hay pasture. The Existing Vegetation sections makes no reference to grasses or other vegetation typically found in these areas. Please update.

3.4 Existing Project Resources:

• Please add a statement regarding the completed PJD submittal also included in Appendix 3 in this section.

Table 5:

• Add a row for the Existing Length of Reach (LF) to the first table. The second table showing UT2, UT3 and UT4 has this parameter listed.

5.2 FEMA Floodplain Compliance and Hydrologic Trespass:

• Do the proposed site modifications increase the risk of hydrologic trespass to any areas outside of the conservation easement? The discussion needs to address any concerns onsite or offsite that could be impacted.

5.3 401/404:

• Please remember to update final plans with safety fencing location around wetlands outside of the proposed limits of disturbance.

Table 13:

• Please provide an explanation for why the design discharge changes between existing and design.

7.4 Design Discharge Analysis and Table 14:

"This decrease in discharge can be attributed to the attenuation of water in the wetland upstream
of Carpenter Branch. Wetland restoration efforts will furthermore increase the attenuation of
water, and therefore a relatively low bankfull discharge was determined for Carpenter Branch."
The design Q of 14 is significantly lower than the other methodologies. Can this rationale from
the cited section of 7.4 be defended given that the wetlands are currently ditched? The gauge
data also indicate that the ditching may not be that influential.

7.4.2 Wildlands Regional USGS Rural Piedmont Calculator:

• Section indicates that the Wildlands regional flood frequency analysis 1.2 year predictions are plotted on Figure 8. This analysis is not currently plotted on Figure 8. Please update.

7.6 Project Implementation:

• Please describe how WEI will construct the Priority 2 sections. Will topsoil be stockpiled? Minimum bench and side slopes? Since establishment of vegetative cover and vigor can be a challenge on Priority 2 banks and benches, please include a discussion on how the soil restoration will be addressed during construction and reference potential adaptive management.

Page 21, First Paragraph, Last Sentence:

• Please revise sentence structure. Words accidently left out.

7.6.5 UT4:

• Based on the profile shown on the plan sheet there is concern of adverse impact to the existing culvert upstream of the site. Will raising UT4 through a Priority 1 restoration impound the culvert upstream of the site or cause sediment deposition in the pipe?

7.7.3 Hydrologic Monitoring and Evaluation:

- Will the filling of the agricultural ditches and swales create a drainage concern up gradient and outside of the conservation easement?
- Please provide rationale for a hydrologic success criterion of 12% with 3 gauges ranging from 16-30% in the existing conditions.
- Recommend putting reference gauge hydroperiod in Table 16.

7.8 Vegetation and Planting Plan:

- The October 2016 IRT Mitigation Monitoring Guidance states that planting shall occur between November 15 and March 15. Please update section to reflect this time frame.
- Does WEI plan on treating fescue and other undesirable pasture grasses prior to or during construction? The IRT has recommended early treatment in the past based on observations of fescue impeding planted vegetation establishment and vigor.

7.9 Project Risk and Uncertainties:

• Detailed culver information was not included in the plan sheet details for the draft submittal. Please verify that the new culvert will be appropriately sized and installed correctly to allow aquatic organism passage.

8.2 Vegetation:

- Please identify the target community types and reference the sheet number of the species list for each zone in the design plans.
- WEI expects stunted vegetation growth in proposed wetland restoration areas due to inundation periods. What average height does WEI expect to see in these areas? WEI may want to reiterate this expectation in Table 17.

8.5 Benthic Macroinvertebrates and Water Quality Monitoring:

• If WEI wants to pursue the potential 2% to 4% credit bonus associated with additional monitoring, then a plan must be outlined in the Mitigation Plan and not after the fact. Please include a monitoring plan and discussion including water quality and benthic macroinvertebrate sampling techniques that will be employed to accomplish this task. Please update the mitigation plan accordingly. If WEI decides to pursue the additional monitoring, please allow DMS to review the protocols before submitting final draft.

9.0 Monitoring Plan, Table 17, Table 18, Plansheets:

• The number of monitoring stations does not comply with the USACE 2016 Guidance Document requirements for streams. At the design bankfull width for Carpenter Creek, 18 cross sections are prescribed, 5 have been proposed. Additional gauges may also be requested to meet the requirement to gauge the center and edges of wetlands. Please update accordingly.

Table 18:

• Please provide rationale for baseline pebble counts at riffles and then conducting reach wide counts only during monitoring.

Table 20:

- DMS is currently updating the Required Tables Spreadsheet based on IRT and Provider feedback. Please add a column at the end for "Credits".
- For accounting purposes, please extend the credit calculations out to the third decimal place for streams and wetlands.
- Credit calculations used in the Wilmington District Stream Buffer Credit Calculator are slightly off when compared to Table 20. For example, Restoration Creditable Stream Length is shown as 3021.3 in the calculator, but summing Table 20 yields 3021. Preservation in the calculator shows 477.5, but Table 20 is 477. Total Baseline Credit in the calculator is shown as 3116.80, but Table 20 indicates 3116. Please revise once Table 20 has been finalized.
- The Asset Table tab in the Required Tables file shows UT4 as Restoration at a 2:1 ratio, and Table 20 in the report shows it as 1:1. Please update.
- Please populate the Stream Restoration Level columns with their respective lengths.

Figure 9 and Figure 10:

• Please add location of proposed fencing.

Proposed Riparian Vegetation Plantings:

• The IRT has requested recently that a figure noting the different planting zones be included in the mitigation plan. Please consider adding this figure in the Figures section and referencing in the report.

Preliminary Design Plans:

- Please add fencing and detail.
- Update plans with wetland safety fence locations for final.
 - There are currently 3 details for safety fence in the draft plans.

Digital Deliverables:

- The following asset features had feature lengths/areas that differed from the reported values. Please provide updated features for these assets that accurately represent the values reported in Table 20.
 - o UT4: 34 ft vs. 45 ft
 - o Wetland Re-Establishment: 5.714 ac vs. 5.897 ac
- Please provide vegetation plot features as polygons rather than points.
- Please add ID attributes to all monitoring features.
- In Fig 3, there are 9 existing cross-sections, but only 3 existing conditions cross-sections were included in Appendix 6.
- Data for 6 of the 9 existing conditions cross sections were provided in the required DMS Mit Plan Tables Spreadsheet. Please include the data for the remaining 3 cross-sections.
- Please provide Excel versions of cross-section, substrate and gauge data instead of PDFs.

At your earliest convenience, please provide a written response letter addressing the DMS comments provided and a revised/updated electronic copy of the draft mitigation plan. The comment response letter should be included in the revised draft mitigation plan after the report cover. If you have any questions, please contact me at any time at (828) 231-7912 or email me at <u>matthew.reid@ncdenr.gov</u>.

Sincerely,

Matthew Reid

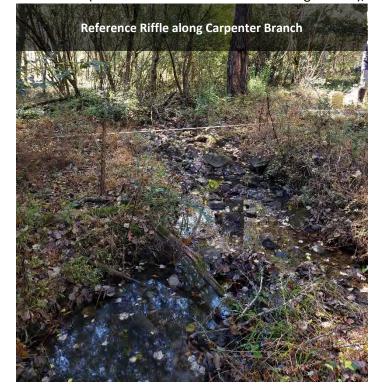
Matthew Reid Project Manager – Western Region NCDEQ – Division of Mitigation Services 5 Ravenscroft Dr., Suite 102 Asheville, NC 28801 (828) 231-7912 Mobile

North Carolina Department of Environmental Quality | Division of Mitigation Services 217 W. Jones Street | 1652 Mail Service Center | Raleigh, North Carolina 27699-1652 919.707.8976

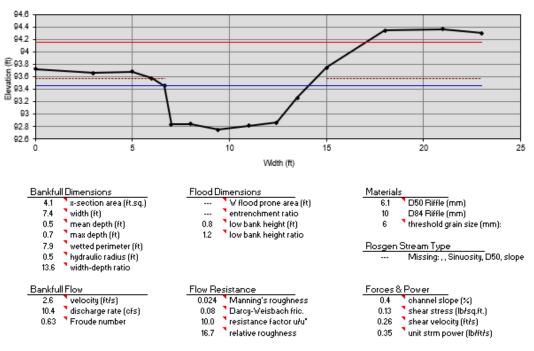
MEMORANDUM

TO: Matthew Reid, NC DMS FROM: Eric Neuhaus, PE September 4, 2020 DATE: RE: **Carpenter Bottom Mitigation Site** Catawba River Basin 03050102 (03050103 Expanded Service Area) Gaston County, NC DMS ID No. 100090 **DEQ Contract Number 7731** RFQ Number 09132018 SAW-2018-02062 **Response to NCDMS Mitigation Plan Comments**

This memo documents NCDMS's initial Draft Mitigation Plan review comments (*in italics*) received from Matthew Reid's letter dated 08/31/2020, the project team's responses, and where the revisions have been included in the final Mitigation Plan.


Mitigation Plan Comments:

- *Title Page: Please include the 401 permit number if available.*
 - The 401-permit number is not available. Per NCDMS, the 401-permit application cannot be submitted without the completion of Task 2.
- Introduction: Stream credits and wetland credits do not match Table 20. Please update for final to match revised asset table.
 - Stream and wetland mitigation credits were updated in the introduction to match Table 20.
- Table 1: Suggest reporting location in decimal degrees.
 - Project Coordinates were updated to decimal degrees in Table 1.
- **3.2**: Please indicate the approximate acreage of forest cleared between 2012 and 2016.
 - Based on aerial photography, approximately 2.4 acres of forest within the proposed conservation easement was cleared sometime in 2014. This information was added to Section 3.2.
- **3.3 Existing Vegetation**: The Land Use/Land Cover section describes the site as being maintained as active cattle and hay pasture. The Existing Vegetation sections makes no reference to grasses or other vegetation typically found in these areas. Please update.


- Text was added to Section 3.3 referring to grass and weed species found within managed cattle hay pasture.
- **3.4 Existing Project Resources**: Please add a statement regarding the completed PJD submittal also included in Appendix 3 in this section.
 - The following text was added to Section 3.4: "An approved preliminary jurisdictional determination including wetland and non-wetland waters is included in Appendix 3."
- **Table 5:** Add a row for the Existing Length of Reach (LF) to the first table. The second table showing UT2, UT3 and UT4 has this parameter listed.
 - Existing Length of Reach (LF) was added to Table 5 for Carpenter Branch and UT1 and lengths were reconciled with the digital submittal information.
- **5.2 FEMA Floodplain Compliance and Hydrologic Trespass:** Do the proposed site modifications increase the risk of hydrologic trespass to any areas outside of the conservation easement? The discussion needs to address any concerns onsite or offsite that could be impacted.
 - The potential for hydrologic trespass was heavily considered as part of the design and Wildlands believes the current design mitigates much of the risk. Text was added to Section 5.2 identifying potential risk and how this is being addressed as part of the design.
- **5.3 401/404:** Please remember to update final plans with safety fencing locations around wetlands outside of the proposed limits of disturbance.
 - Wetlands listed as no impact on the PCN but inside the limits of disturbance (LOD) will have safety fence for protection. Wetland areas outside of the LOD will not be safety fenced as no disturbance will be permitted outside the LOD.
- **Table 13:** Please provide an explanation for why the design discharge changes between existing and design.
 - Design discharge values for existing conditions are calculated based on bankfull calls made in the field and during existing conditions data processing. Design discharge values for proposed conditions are estimated using the methodology outlined in the Section 7.4 of the report. These values vary based on the differing methods of estimation. The existing conditions estimates are not always straightforward based on the impaired conditions of the channel and design discharge estimates consider potential changes to site hydrology. As such, it is not uncommon for the values to vary by 3 to 5 cubic feet per second (CFS).
- **7.4 Design Discharge Analysis and Table 14:** "This decrease in discharge can be attributed to the attenuation of water in the wetland upstream of Carpenter Branch. Wetland restoration efforts will furthermore increase the attenuation of water, and therefore a relatively low bankfull discharge was determined for Carpenter Branch." The design Q of 14 is significantly lower than the other methodologies. Can this rationale from the cited section of 7.4 be defended given that the wetlands are currently ditched? The gauge data also indicate that the ditching may not be that influential.

 There is a short section of stable channel along Carpenter's Branch where the bed has held grade based on a relic abandoned farm crossing and/or small dam feature. Wildlands surveyed this cross section (XS4) as it provided a good, stable, on-site riffle dimension reference. Based on the influence of the data (shown below and included in the digital files),

Wildlands lowered the design discharge of Carpenter's Branch. While this reference dimension influenced the design of the channel, the discharge was not lowered to match the exact discharge of this dimension based on other reference information (site specific reference reach curve, NC Rural Piedmont Regional Curve, etc.). Wildlands felt the selected discharge of 14 CFS was a reasonable conciliation of the evaluated on-site data and traditional discharge estimate methodologies given the selected discharge falls within the 95% lower confidence interval of the Regional Curve.

Carpenter Bottom - On-Site Reference

- **7.4.2 Wildlands Regional USGS Rural Piedmont Calculator:** Section indicates that the Wildlands regional flood frequency analysis 1.2-year predictions are plotted on Figure 8. This analysis is not currently plotted on Figure 8. Please update.
 - Wildlands regional flood frequency analysis 1.2-year predictions are now plotted on Figure 8.
- **7.6 Project Implementation:** Please describe how WEI will construct the Priority 2 sections. Will topsoil be stockpiled? Minimum bench and side slopes? Since establishment of vegetative cover and vigor can be a challenge on Priority 2 banks and benches, please include a discussion on how the soil restoration will be addressed during construction and reference potential adaptive management.
 - The following text was added to Section 7.8 of the report:

"Mechanical site soil preparation will be implemented where necessary, including but not limited to wetland areas, priority 2 benches, and areas of cut greater than one foot. Site preparations will be performed to create soil physical properties favorable for tree growth. In the pasture areas, the planted area will be ripped in a grid-like pattern with a maximum rip shank spacing of six feet. Ripping will be performed during the driest conditions feasible to maximize shatter of the plow pan. Ripping may be implemented to reduce soil compaction resulting from haul roads, stockpile areas, etc. Where required based on site conditions, topsoil will be stockpiled and reapplied. Soil amendments may be incorporated to augment survival and growth of planted vegetation as determined necessary by soil testing."

- Wildlands will strip and stockpile topsoil before grading and reapply the material after finished grading but prior to roughening to help establish vegetation in wetland grading areas and on priority 2 benches, as necessary. Topsoil and subsoils within proposed grading areas will be tested for typical soil parameters and amendments will be considered based upon the results. If vegetative cover struggles to establish in planted areas of the project. Wildlands will resample the affected area and implement soil amendments based on the results of a soil test during the monitoring period.
- Typical cross sections found on sheets 1.1, 1.2, and 1.3 in the design plans indicate bench slope tie ins to be 3:1 and bench slopes to be 10:1. Bench widths will vary to balance earthwork and based on site conditions. As shown in the design plans, they are all currently greater than 1.5 bankfull width. Wildlands anticipates bench widths greater than 1.5 bankfull widths as a consistent minimum for proposed priority two benches during construction.
- Page 21, First Paragraph, Last Sentence: Please revise sentence structure. Words accidently left out.
 - The last sentence of the paragraph was revised to: "Livestock will be excluded along the entire length of the reach."
- **7.6.5 UT4:** Based on the profile shown on the plan sheet there is concern of adverse impact to the existing culvert upstream of the site. Will raising UT4 through a Priority 1 restoration impound the culvert upstream of the site or cause sediment deposition in the pipe?
 - There is not an existing culvert upstream of UT4. The existing culvert along UT4 is being removed as part of the project. If NCDMS is referring to UT1 and the associated upstream

culvert, Wildlands will evaluate the condition of the culvert before final design and determine if it makes logistical sense to replace this small culvert as part of the project, but based on the current design, Wildlands is not concerned about damage to the existing pipe based on the installation of the downstream BMP and associated stream restoration.

• 7.7.3 Hydrologic Monitoring and Evaluation:

- Will the filling of the agricultural ditches and swales create a drainage concern up gradient and outside of the conservation easement?
 - Wildlands has evaluated areas outside the proposed conservation easement and believes that we have addressed future drainage concerns. Upgradient of delineated wetland M outside of the proposed conservation easement, positive drainage will be maintained via an existing drainage ditch. Between the two forks of the proposed wetland the topography increases by at least 1-foot quickly, which will help this area maintain upland hydrology. Drainage effects at the very upstream extent of delineated wetland N are minor when compared to the interior of the wetland restoration areas. Areas beyond the proposed wetland boundary and stream floodplain quickly increase in elevations, helping to avoid increased inundation. Text was added in Section 5.2 addressing potential hydrologic trespass to clarify these evaluations within the mitigation plan.
- Please provide rationale for a hydrologic success criterion of 12% with 3 gauges ranging from 16-30% in the existing conditions.
 - As outlined in the report, 12% represents the upper limit of wetland saturation thresholds provided in the Notification of Issuance of *Guidance for Compensatory Stream and Wetland Mitigation Conducted for the Wilmington District* (October 24, 2016) for the site soils (Worsham) which were determined by an outside License Soil Scientist (LSS). Additionally, when looking at rainfall patterns for 2019, February, April, June, and August of the growing season were either at or exceeded the 70% rainfall exceedance threshold based on historic data established by the Gaston County WETS table. As noted in the report groundwater gages with higher inundation periods (1,3, and 5) are within the interior area proposed for wetland restoration and as shown by data from gages 2 and 4 are not necessarily representative of the entire proposed wetland restoration area. Based on these observations, Wildlands believes a saturation threshold of 12% represents monitoring criteria on the wetter end of regulatory guidance as a minimum success criterion, which is consistent with Site goals. Wildlands added the 2019 rainfall evaluation to Appendix 7 and updated headings in Table 16 for clarification.
- Recommend putting reference gauge hydroperiod in Table 16.
 - Average consecutive days of inundation and corresponding percent of growing season for four years of monitored groundwater data was added to Table 16. It should be noted that reference wetland information including soil types, vegetation, landscape information, and hummock depth/formation are all information gleaned from reference wetland areas. Hydrology is only one of many factors used to identify a useful reference wetland.

- 7.8 Vegetation and Planting Plan:
 - The October 2016 IRT Mitigation Guidance states that planting shall occur between November 15 and March 15. Please update section to reflect this time frame.

Section 7.8 was updated with the following text: "Per the 2016 NCIRT Mitigation Guidance plantings are preferred to occur between November 15 and March 15, however, in some cases the March 15 deadline cannot be met but planting must occur no later than April 30 for acceptance as a full season of monitoring. Per IRT Guidance, vegetation monitoring also cannot be started within 180 days of the completion of planting."

- Does WEI plan on treating fescue and other undesirable pasture grasses prior to or during construction? The IRT has recommended early treatment in the past based on observations of fescue impeding planted vegetation establishment and vigor.
 - Wildlands primary treatment method for fescue will be mechanical removal based on roughening of the wetland area and overall extent of site grading. If areas of fescue are not proposed for grading or roughening, Wildlands will employ chemical applications via tree rings to offset any impeding bareroot growth post construction.
- 7.9 Project Risk and Uncertainties:
 - Detailed culver information was not included in the plan sheet details for the draft submittal. Please verify that the new culvert will be appropriately sized and installed correctly to allow aquatic organism passage.
 - Detailed culvert information is not typically included with Mitigation Plan submittals. This level of design is implemented after IRT Mitigation Plan approval. The proposed culvert crossing will be sized to pass a minimum 10-year storm event and will be imbedded below stream bed grade between 8-inches and 12-inches depending on the determined pipe size.
- 8.2 Vegetation:
 - Please identify the target community types and reference the sheet number of the species list for each zone in the design plans.
 - The following text was added to Section 8.2: "The Site will be planted with species to achieve a target community of a Southern Piedmont Small Floodplain and Riparian Forest. Species designated for planting were selected based on compatibility of silvics with expected site conditions within a given planting zone, observation of reference communities, and best professional judgement. Species lists for each planting zone are listed on Sheet 4.0 of the preliminary design plans included in the Appendix. Additionally, proposed planting zones are shown in Figure 11."
 - WEI expects stunted vegetation growth in proposed wetland restoration areas due to inundation periods. What average height does WEI expect to see in these areas? WEI may want to reiterate this expectation in Table 17.
 - Wildlands added the following text to Section 8.2 and Table 17: "However, given inundation periods anticipated for areas proposed for wetland restoration, woody

vegetation growth may be hindered in these areas resulting in stunted heights. Taking this into consideration, monitoring criteria for woody vegetation within wetland restorations zones should average 3.5 feet in height in each plot at the end of the fifth monitoring year (MY5) and 5 feet in height in each plot at the end of the seventh year (MY7) of monitoring year."

- 8.5 Benthic Macroinvertebrates and Water Quality Monitoring:
 - If WEI wants to pursue the potential 2% to 4% credit bonus associated with additional monitoring, then a plan must be outlined in the Mitigation Plan and not after the fact. Please include a monitoring plan and discussion including water quality and benthic macroinvertebrate sampling techniques that will be employed to accomplish this task. Please update the mitigation plan accordingly. If WEI decides to pursue the additional monitoring, please allow DMS to review the protocols before submitting final draft.
 - Wildlands has evaluated this option and does not plan to pursue the potential 2% to 4% credit bonus.
- 9.0 Monitoring Plan, Table 17, Table 18, Plansheets:
 - The number of monitoring stations does not comply with the USACE 2016 Guidance Document requirements for streams. At the design bankfull width for Carpenter Creek, 18 cross sections are prescribed, 5 have been proposed. Additional gauges may also be requested to meet the requirement to gauge the center and edges of wetlands. Please update accordingly.
 - Wildlands original proposed number of 5 cross sections was based on Carpenter Branch classifying as a narrow stream with a proposed bankfull width of 7.5 feet and 2 cross sections per 1,000 LF of channel based on the guidance. Alternatively, if Carpenter Branch Reach 1 is classified as a large stream with a proposed linear footage of restoration of 2,250 LF. The guidance would require 15 cross sections based on the guidance for large streams of 1 monitoring cross-section per 20 bankfull widths (2,250/(7.5*20)). However given that a 7.5-foot bankfull width is on the smaller end of what is considered a large stream (not definitive in the guidance), along with previous project experience and associated standard monitoring practice considerations, Wildands proposes 12 Cross Sections (6 riffle, 6 pool) for Carpenter Branch. Table 18 and Figure 10 have been updated accordingly.
 - Wildlands previous experience with wetland gaging post construction within wetland restoration areas has been approximately one groundwater gage per acre depending on Site conditions. Based on existing gaging of the Site, Wildlands believes 9 groundwater gages should be sufficient to map overall groundwater trends throughout the wetland area.
- **Table 18:** Please provide rationale for baseline pebble counts at riffle and then conducting reach wide counts only during monitoring.
 - Wildlands performs Riffle 100-count substrate sampling during baseline monitoring only to characterize pavement within the riffles in the as-built conditions. Reach-wide pebble counts are performed on restoration reaches in monitoring years one, two, three, five, and seven for classification purposes of Rosgen channel types.

- Table 20
 - DMS is currently updating the Required Tables Spreadsheet based on IRT and Provider feedback. Please add a column at the end for "Credits".
 - A column was added for Mitigation Credits in the Required DMS Mit Plan Tables digital submittal as well as Table 20:Project Asset Table within the report.
 - For accounting purposes, please extend the credit calculations out the third decimal place for streams and wetlands.
 - Stream and wetland credits are listed to 3 decimal places in the Required DMS Mit Plan Tables digital submittal as well as Table 20: Project Asset Table within the report.
 - Credit calculations used in the Wilmington District Stream Buffer Credit Calculator are slightly off when compared to Table 20. For example, Restoration Creditable Stream Length is shown as 3021.3 in the calculator, but summing Table 20 yields 3021. Preservation in the calculator shows 477.5, but Table 20 is 477. Total Baseline Credit in the calculator is shown as 3116.80, but Table 20 indicates 3116. Please revise once Table 20 has been finalized.
 - Lengths and crediting were finalized and are now identical within the Wilmington District Buffer Credit Calculator and Table 20.
 - The Asset Table tab in the Required Tables file shows UT4 as Restoration at a 2:1 ratio, and Table 20 in the report shows it as 1:1. Please update.
 - UT4 Restoration was revised to 1:1 in the Required DMS Mit Plan Tables digital submittal.
 - Please populate the Stream Restoration Level columns with their respective lengths.
 - Stream Restoration Level columns were populated in the Required DMS Mit Plan Tables digital submittal as well as Table 20: Project Asset Table within the report.
- Figure 9 and Figure 10: Please add location of proposed fencing.
 - Cattle are being removed from the property by the property owners as the method of cattle exclusion. No fencing is proposed for the project.
- **Proposed Riparian Vegetation Plantings:** The IRT has requested recently that a figure noting the different planting zones to be included in the mitigation plan. Please consider adding this figure in the Figures section and referencing in the report.
 - Figure 11 (Proposed Planting Zone Map) was included and referenced in Section 8.2.
- Preliminary Design Plans:
 - Please add fencing and detail.
 - Cattle are being removed from the property by the property owners as the method of cattle exclusion. No fencing is proposed for the project.
 - Update plans with wetland safety fence locations for final.

- Wildlands updated the plans to show safety fence where wetlands abut disturbed areas within the LOD. Wildlands will refine these locations as we develop final construction plans.
- There are currently 3 details for safety fence in the draft plans
 - o Extra safety fence details were removed from design plans

• Digital Deliverables:

- The following asset features had feature lengths/areas that differed from the reported values. Please provide updated features for these assets that accurately represent the values reported in Table 20.
 - o UT4: 34 ft vs 45 ft
 - Proposed length was updated and changed to 36.364 ft in Table 20 for UT4 to reflect the proposed length of UT4 restoration per the design plans. The attribute length for UT4 was updated in the feature class to reflect 36.349 ft.
 - Wetland Re-Establishment: 5.714 ac vs 5.897 ac
 - The attribute area for Wetland Re-Establishment was updated in the feature class to reflect 5.714 ac
- Please provide vegetation plot features as polygons rather than points.
 - A polygon feature class has been created for the vegetation plots and is included in the proposed condition geodatabase; the point feature class of the veg plots has been deleted from the geodatabase.
- Please add ID attributes to all monitoring features.
 - All monitoring feature attribute tables have been updated with populated ID fields. These ID fields are subject to change at the As-Built and Baseline Monitoring stage of the project based on field conditions during initial monitoring appurtenance establishment.
- In Fig 3, there are 9 existing conditions cross sections, but only 3 existing conditions crosssections were included in Appendix 6.
 - Appendix 6 as well as the associated digital files were updated to include all 9 cross sections.
- Data for 6 of the 9 existing conditions cross sections were provided in the required DMS Mit Plan Tables Spreadsheet. Please include data for the remaining 3 cross-sections.
 - Data for the remaining three cross sections are now provided in the required DMS Mitigation Plan Tables Spreadsheet.
- Please provide Excel versions of cross-section, substrate and gauge data instead of PDFs.
 - Excel data was added to the existing conditions folder of the digital submittal. This data is also provided in the Required DMS Mitigation Plan Tables Spreadsheet sheet for cross-sections, substrate, and gage data.

TABLE OF CONTENTS

1.0	In	troduction	4
2.0	W	/atershed Approach and Site Selection	4
3.0	В	aseline and Existing Conditions	5
3	3.1	Landscape Characteristics	5
3	3.2	Land Use/Land Cover	6
3	3.3	Existing Vegetation	7
3	3.4	Existing Project Resources	8
4.0	F	unctional Uplift Potential	12
2	1.1	Wetland Functional Uplift Potential	12
2	1.2	Stream Functional Uplift Potential	
2	1.3	Hydrology	12
2	1.4	Hydraulics	12
2	1.5	Channel Geomorphology	13
2	1.6	Physicochemical	
2	1.7	Biology	
2	1.8	Overall Functional Uplift Potential	13
4	1.9	Site Constraints to Functional Uplift	14
5.0	R	egulatory Considerations	14
5	5.1	Biological and Cultural Resources	
5	5.2	FEMA Floodplain Compliance and Hydrologic Trespass	14
5	5.3	401/404	15
6.0	N	litigation Site Goals and Objectives	16
7.0	D	esign Approach and Mitigation Work Plan	
7	7.1	Design Approach Overview	17
7	7.2	Reference Streams	
7	7.3	Design Channel Morphological Parameters	20
7	7.4	Design Discharge Analysis	21
7	7.5	Sediment Transport Analysis	23
7	7.6	Project Implementation	24
7	7.7	Proposed Wetland Design Overview	26
7	7.8	Vegetation and Planting Plan	29
7	7.9	Project Risk and Uncertainties	
8.0	P	erformance Standards	30
8	3.1	Streams	31
8	3.2	Vegetation	32
8	3.3	Wetland	32
8	3.4	Visual Assessments	33
8	3.5	Benthic Macroinvertebrates and Water Quality Monitoring	33
9.0	N	Ionitoring Plan	33
9	9.1	Monitoring Components	33
10.0	Lo	ong-Term Management Plan	36
11.0	Α	daptive Management Plan	36
12.0	D	etermination of Credits	37
13.0	R	eferences	39

TABLES

Table 1: Project Attribute Table Part 1	4
Table 2: Project Attribute Table Part 2	5
Table 3: Project Soil Types	
Table 4: Drainage Areas and Associated Land Use	7
Table 5: Project Streams Attribute Table	9
Table 6: Existing Wetland Summary	10
Table 7: Project Attribute Table Part 4	14
Table 8: Estimated Impacts to Project Wetlands	15
Table 9: Mitigation Goals and Objectives	16
Table 10: Stream and Wetland Stressors and Restoration Approach	
Table 11: Stream Reference Data Used in Development of Design Parameters	
Table 12: Summary of Morphological Parameters	
Table 13: Summary of Morphological Parameters	21
Table 14: Summary of East Side Design Discharge Analysis	22
Table 15: Results of Competence Analysis	23
Table 16: Existing Groundwater Monitoring Gage Data and Analysis Results	28
Table 17: Monitoring Plan	
Table 18: Monitoring Components	35
Table 19: Long-term Management Plan	
Table 20: Project Asset Table	

FIGURES

- Figure 1 Vicinity Map
- Figure 2 Service Area Map
- Figure 3 Site Map
- Figure 4 Watershed Map
- Figure 5 USGS Topographic Map
- Figure 6 Soils Map
- Figure 7 Reference Reach Vicinity Map
- Figure 8 Discharge Analysis
- Figure 9 Concept Map
- Figure 10 Monitoring Components Map
- Figure 11 Proposed Planting Zone Map

APPENDICES

- Appendix 1Site Protection Instrument
- Appendix 2 Historic Aerial Photos
- Appendix 3 Jurisdictional Determination and Wetland Assessment Forms
- Appendix 4 Stream Identification Forms
- Appendix 5 Categorical Exclusion Documentation and Agency Correspondence
- Appendix 6 Data, Analysis, and Supplementary Design Information
- Appendix 7 Wetland Design Documents and Data
- Appendix 8 Preliminary Design Plans
- Appendix 9 Invasive Vegetation Treatment Plan
- Appendix 10 Maintenance Plan
- Appendix 11 Credit Release Schedule
- Appendix 12Financial Assurance
- Appendix 13 NCIRT Meeting Minutes

1.0 Introduction

The Carpenter Bottom Mitigation Site (Site) is located in Gaston County, NC approximately 4.1 miles south of the City of Lincolnton and just south of the Gaston County/Lincoln County border (Figure 1). The project includes wetland rehabilitation and wetland re-establishment as well as the restoration and enhancement of five unnamed headwater tributaries to Beaverdam Creek which have been given names for this project (Carpenter Branch, UT1, UT2, UT3, UT4). The project is located within the Catawba River Basin Hydrologic Unit Code (HUC) 03050102050020 and NC Division of Water Resources (DWR) Subbasin 03-08-35 and was selected by DMS to provide stream credits and wetland credits for the [Catawba River Basin HUC 03050103 within the expanded service area] (Figure 2). The Site is located within the South Fork Catawba River (High Shoals) WS-IV water supply watershed and is located just outside the Indian Creek Targeted Local Watershed (TLW). The project proposes to restore and preserve stream channels and restore 9.661-acres of historically altered wetlands. Restoration and enhancement of the project streams and wetlands will provide 3,067.849 cool stream credits and 8.345 wetland credits and will be protected in perpetuity by an 18-acre conservation easement. The Site Protection Instrument detailing the conservation easement is included in Appendix 1. General project information is included below in Table 1.

Project Information					
Project Name	Carpenter Bottom Mitigation Site				
County	Gaston				
Project Area (acres)	18.0				
Project Coordinates (latitude and longitude)	35.410725 N, 81.260717 W				
Planted Acreage (acres of woody stems planted)	16.2				

 Table 1: Project Attribute Table Part 1 – Carpenter Bottom Mitigation Site

2.0 Watershed Approach and Site Selection

The Site was selected based on its potential to support the goals and objectives of current conservation and watershed planning documents which are outlined outlined below.

- The July 2007 (amended in 2013) Catawba River Basin Restoration Priorities (RBRP) identifies sediment impairments on waterways within the basin as a current basin stressor.
- Beaverdam Creek is listed as fully supporting of benthic and fish communities within the 2010 Catawba River Basinwide Water Quality Plan (WQP). However, the WQP notes that signs of sedimentation impacting stream health are becoming evident and protection of its headwaters is a top priority to continue supporting the currently high biological quality of the creek.
- The Catawba River basin is also discussed in the 2015 North Carolina Wildlife Resource Commission's (NCWRC) Wildlife Action Plan (WAP). The report notes that streams within the basin are degraded or threatened by sedimentation, loss of riparian woody vegetation, channelization and/or stream relocation, and nutrient loading. Poorly managed agricultural activities and alterations to stream channels, including loss of riparian vegetation are cited as contributing to sedimentation and habitat degradation via bank erosion.

Restoration of the Site will directly and indirectly address stressors identified in the RBRP, the DWR Basinwide WQP, and the NCWRC WAP by reducing sediment loads through cattle exclusion within headwater tributaries of Beaverdam Creek, creating stable stream banks, and restoring a native forested riparian buffer. Additionally, the proposed project will reduce nutrient and sediment contributions to

receiving waters in a water supply watershed by restoring a natural headwater wetland which will increase nutrient and sediment uptake at the Site.

3.0 Baseline and Existing Conditions

The Site watershed (Table 2 and Figure 4) is in the central portion of the Catawba 02. It is situated in the residential countryside in Gaston County just south of the City of Lincolnton and near the Gaston County/Lincoln County border. The following sections describe the existing conditions of the Site and its watershed.

Project Watershed Summary Information					
Physiographic Province	Piedmont				
Ecoregion	Southern Outer Piedmont				
River Basin	Catawba River				
USGS HUC (8 digit, 14 digit)	03050102, 03050102050020				
NCDWR Sub-basin	03-08-35				
Project Drainage Area (acres)	180				
Project Drainage Area Percentage of Impervious Area	0.65%				
2011 NLCD Land Use Classification	43% forest, 43% agricultural row crops and hay, 8% grassland/herbaceous, <1% shrubland, 5% urban, <1% impervious				

3.1 Landscape Characteristics

3.1.1 Physiography and Topography

The Site is in the Southern Outer Piedmont Belt of the Piedmont physiographic province. The Piedmont is characterized by gently rolling, well-rounded hills with long low ridges, with elevations ranging anywhere from 300 to 1500 feet above sea level. The Site topography and relief are typical for the region, as illustrated in Figure 5. Site topography is moderate to flat within the headwater wetland area that drains to the ephemeral ditches. Stream and valley slopes increase as Carpenter Branch becomes perennial and flows toward Beaverdam Creek. The downstream end of the project steps down over natural bedrock features as the stream approaches the floodplain of Beaverdam Creek

3.1.2 Geology and Soils

The Site is located on the Cat Square terrane of the Piedmont physiographic province. The Cat square terrane is composed of metamorphic sedimentary and volcanic rocks that have been intruded by younger granitic rocks. The underlying geology of the Site is mapped as Late Proterozoic (500 to 900 million years in age) metamorphic rock mica schist (CZms). Multiple bedrock outcroppings can be seen on site and within the channel bed.

The proposed project is mapped by the Gaston County Soil Survey. Project area soils are described below in Table 3. Figure 6 provides a soils map of the Site.

Soil Name	Description
Worsham Loam	Worsham soils are found in depressions and at the toe of slopes on flats in the Piedmont. Slopes are typically between 1 and 4 percent. They are poorly-drained alluvial soils with a very low permeability. Worsham Loam is listed on the NC hydric soils list for Gaston County.

Table 3: Project Soil Types – Carpenter Bottom Mitigation Site

Soil Name	Description		
Chewacla Loam	Chewacla Loam soils are predominantly found in Piedmont river valleys. They are somewhat poorly-drained alluvial soils with a seasonal high-water table of 6-24 inches. This soil unit is frequently flooded or ponded. Chewacla Loam is listed on the NC hydric soils list for Gaston County.		
Pacolet Sandy Clay Loam	Pacolet series soils consists of very deep, well drained, moderately permeable soils that are typically found in Piedmont uplands. Slopes are commonly steep (between 15 and 25 percent) but can range anywhere from 2 to 60 percent. Most areas of Pacolet series soils are in forests of pines and mixed hardwoods; however, many areas have been cleared and are used for agriculture including hay and pasture.		
Winnsboro Loam	The Winnsboro series consists of deep, well drained, slowly permeable fine soil that formed in material mostly weathered from dark colored basic rocks of the Piedmont. Winnsboro Loam is typically found on gently to moderately sloping Piedmont uplands.		
Helena Sandy Loam	Helena soils are very deep and moderately well drained soils with slow permeability and moderate to rapid surface runoff. They are typically found on slopes from 0 to 15 percent and have a high shrink/swell potential. Helena Sandy Loam is listed on the NC hydric soils list for Gaston County.		
Cecil Sandy Clay Loam	Cecil soils are very deep, well drained moderately permeable soils on ridges and side slopes of the Piedmont uplands. They are typically found on slopes between 2 and 15 percent and have developed in weathered felsic igneous and high-grade metamorphic rocks.		

Source: Soil Survey of Gaston County, North Carolina, USDA-NRCS, http://www.nrcs.usda.gov

To confirm the online mapping, a licensed soil scientist (LSS) performed a soil evaluation of the Site along with Wildlands personnel on April 16, 2018. Details regarding this soils investigation and how it relates to the wetland restoration design are detailed in Section 7.7 – Proposed Wetland Design Overview. The soils investigation confirmed the NRCS web soil survey mapping of the Worsham soil series.

3.2 Land Use/Land Cover

The project watershed totals 0.28 square miles and the primary land uses are agricultural and forest which each comprise 43% of the watershed area. The next largest category of land use is grassland/herbaceous which covers 8% of the watershed area. Urban land comprises 5% of the watershed, and impervious and shrub each comprise less than 1% of the project watershed. The watershed areas and current land uses for each of the project reaches are summarized in Table 4, below.

Historical aerial photographs from 1950 to 2016 (Appendix 2) were reviewed for changes in land use and land cover. The Site has been ditched and maintained as an active cattle and hay pasture as far back as 1950. Based on aerial photography, a small forested area within the proposed wetland restoration was allowed to reforest starting around 1973. However, in 2014 approximately 2.4 acres was deforested to provide additional pasture. A watershed reconnaissance survey was performed on November 10, 2016 to identify on the ground potential site stressors. The future land use potential was examined by reviewing the Gaston County zoning boundaries and the Gaston County 2035 Comprehensive Land Use Plan (Gaston County Planning & Development Services, 2016). Based on this review, potential future site stressors include deforestation for residential development and agriculture. Risks are limited as the majority of the project watershed is already in agriculture and increased hydrology from potential clearing would be attenuated by the proposed restored forested headwater wetland complex.

Table 4: Drainage Areas and Associated Land Use

Reach Name	NCDWR Stream Identification Form Scores	Intermittent/ Perennial	Watershed Area (acres)	Watershed Area (sq. mi.)	Land Use
Carpenter Branch	20.50 38.25	Intermittent ¹ Perennial	180	0.28	43% forest, 43% agricultural row crops and hay, 8% grassland/herbaceous, <1% shrubland, 5% urban
UT1	28.50	Intermittent	20		39% forest, 23% agricultural row crops and hay, 30% grassland/herbaceous, 8% urban
UT2	32.25	Perennial	39		9% forest, 73% agricultural and hay, 4% grassland/herbaceous, 3% shrubland, 11% urban
UT3	20.75	Intermittent	17	0.03	51% forest, 38% agricultural row crops and hay, 5% grassland/herbaceous, 6% urban
UT4	35.00	Perennial	23	0.04	27% forest, 73% agricultural row crops

¹NCDWR stream ID score of 20.50 and classification of intermittent was based on evaluation performed upstream of UT2 drainage (Figure 4.)

3.3 Existing Vegetation

Throughout the wetland re-establishment areas, vegetation within the drainage ditches is typical of ephemeral drainages and/or linear wetland features and includes common rush (Juncus effuses) and flat sedge (Cyperus odoratus). Outside of the drainage ditches, vegetation within wetland re-establishment areas is currently managed in pasture grasses including tall fescue (Festuca arundinacea) and foxtail millet (Setaria italica). Some invasive herbaceous species exist within the pasture including Carolina horsenettle (Solanum carolinense), common ragweed (Ambrosia artemisiifolia) and dogfennel (Eupatorium capillifolium). The area upstream of Ditch 2 proposed for wetland rehabilitation was cleared sometime in 2014 as noted in Section 3.2 of this report. Since vegetation has not been regularly maintained within the wetland rehabilitation area, native woody and herbaceous species have started to establish including but not limited to common rush, flat sedge, jewel weed (Impatiens capensis), buttonbush (Cephalanthus occidentalis), tulip poplar (Liriodendron tulipifera), willow (Salix), riverbirch (Betula nigra), sycamore (Platanus occidentalis), red maple (Acer rubrum), and sweet gum (Liquidambar styraciflua). Along with native species, invasive herbaceous and woody species have established themselves within this area including but not limited to Chinese privet (Ligustrum spp), wild tomato (Solanum carolinense), honey suckle (Lonicera), Japanese stiltgrass (Microstegium vimineum), Asian spiderwort (Murdannia keisak), and hardy orange (Poncirus trifoliata).

Vegetation along the Carpenter Bottom streams consists of native and invasive species within a narrow riparian corridor varying in width from 15 to 20 feet. Native canopy species within the riparian corridor include tulip poplar, red maple (*Acer rubrum*), sycamore, sweet gum, and pawpaw (*Asimina triloba*). Native shrub and herbaceous species along the reach include American holly (*Ilex opaca*), jewel weed, Christmas fern (*Polystichum acrostichoides*), and wool grass (*Scirpus cyperinus*). Invasive species along the reach include Chinese privet, wild tomato, honey suckle, Japanese stiltgrass, Asian spiderwort, hardy orange, and poison ivy (*Toxicodendron radicans*). Outsied the narrow-forested corridor the floodplain is managed in pasture and consists of common pasture species including tall fescue, foxtail millet, Carolina

horsenettle, common ragweed, dogfennel, bull thistle (*Cirsium vulgare*), and broomsedge bluestem (*Andropogon virginicus*).

3.4 Existing Project Resources

Wildlands investigated on-site jurisdictional waters of the United States (US) within the proposed project area. Potential jurisdictional areas were delineated using the US Army Corps of Engineers (USACE) Routine On-Site Determination Method. This method is defined by the 1987 USACE Wetlands Delineation Manual and the subsequent Eastern Mountain and Piedmont Regional Supplement. Streams were classified using North Carolina Department of Water Resources (NCDWR) Classification Forms. Jurisdictional waters of the US were surveyed for inclusion on plans and figures. Wetland determination forms representative of on-site jurisdictional areas as well as non-jurisdictional upland areas are included in Appendix 3. There are five (5) jurisdictional stream channels and 14 jurisdictional waters is included in Appendix 3. Table 5 provide a summary of stream resources within the project limits. Existing conditions are also illustrated in Figure 3. Reach specific cross sections and geomorphic summaries are provided in Appendix 6. NCSAM forms for each stream resource are included in appendix 4.

3.4.1 Jurisdictional Wetlands

A total of 14 jurisdictional wetland features (Wetlands A-N) were documented within the assessment area (Figure 3). Table 6 provides a summary of wetland resources within the project limits. On-site wetland features exhibit prolonged saturation within the upper 12 inches of the soil profile, hydrophytic vegetation, and a depleted matrix or darkened surface horizons. Wetlands N, M, H, and I are drained by ephemeral ditches and are currently in active cattle pasture (Figure 3).

Existing wetlands were evaluated using the North Carolina Wetland Assessment Method (NCWAM). The rapid assessment method evaluates field conditions relative to reference condition to generate function ratings for specific wetland types. Using the NCWAM dichotomous key and best professional judgement, existing wetlands were classified based on their reference wetland type if the area was not disturbed. Onsite wetlands were all classified as headwater forests. All delineated wetlands on-site had an overall wetland rating of low. NCWAM field assessment forms are included in Appendix 3.

3.4.2 Carpenter Branch Reach 1 and Reach 2

Carpenter Branch orginates as an intermittent stream from an agriculatural ditch that drains from wetland N. Carpenter Branch Reach 1 remains an intermittent stream until the confluence of UT2 where it becomes perennial. Carpenter Branch Reach 1 flows through an unconfined alluvial valley with moderate slope in an incised condition (BHR>3.0). The stream exhibits evidence of active soil headcuts, bank erosion, and cattle activity including wallows and entry/exit runs. Bedform diversity is moderate, with some sections of riffle-pool sequences. However, much of the bedform is actively impacted by

cattle trampling. A relic road crossing maintains channel grade for a short section usptream of the conflluence with UT1. The stream has one existing undersized cuvlert crossing. In Reach 2, the channel incison reduces and channel bedform improves. The valley slope increases and a stable step-pool channel begins to form. Cattle have access to the downstream extents, but impacts appear to be limited by established vegetation which limits cattle activity. The riparian corridor is narrow and heavily

invested with invasives species, particulary chinese privet and hardy orange.

3.4.3 UT1

UT1 originates on-site as an ephemeral channel as it flows from a small existing culvert within a forested buffer. The stream becomes intermittent approximately 70 LF downstream of the existing culvert. The reach is deeply incised for its entirety and exhibits active erosion on both banks. Bedform is embedded by bank sediments from active erosion.

3.4.4 UT2

UT2 originates as a perennial stream flowing from agricultural ditches which currently drain Wetlands H and M. The reach flows through a wooded unconfined valley with a low slope to its confluence with Carpenter Branch. The bed material consists of fine sediments from adjacent agricultural fields, eroding banks, and cattle wallows. Bedform diversity and riffle-pool habitat is lacking throughout the reach. The stream appears to have been channelized at some point, likely to drain upstream wetland areas and/or connect it to the existing agricultural ditch network.

3.4.5 UT3

UT3 is an intermittent stream that originates within the project limits. The reach is confined against the right valley wall for approximately 180 LF before opening to an unconfined valley. The upstream extents of the reach are extensively impacted by cattle trampling and wallowing. The riparian corridor along the reach consists of sparse mature woody vegetation, with the understory grazed by cattle. The stream exhibits weak to moderate riffle-pool sequence and substrate dominated by fines from upstream cattle impacts.

3.4.6 UT4

UT4 is a perennial stream that originates off-site. The reach flows into the project area through a smooth walled plastic pipe culvert. Downstream of the existing culvert, the channel is daylighted for approximately 20 LF before converging with Carpenter Branch. Channel habitat, bedform, and geomorphology is currently not functioning due to the existing culvert.

Parameter	Carpenter Branch (Intermittent)	Carpenter Branch (R1, R2: Perennial)	UT1
Existing Length of Reach (LF)	376 2189		123
Valley Confinement (confined, moderately confined, unconfined)	Moderately Confined to confined moderately confined		Confined
Existing Drainage Area (acres)	48 180		20
Perennial, Intermittent, Ephemeral	I	Р	I
NCDWR Water Quality Classification		WS-IV	
Existing Stream Classification ¹	G4	G4/B4	G4
Evolutionary Trend (Simon) ¹	III III/IV/V		Ш
FEMA Classification	None		
NCSAM Rating	Low	Low/High	Low

Table 5: Project Streams Attribute Table

Parameter	UT2	UT3	UT4	
Existing Length of Reach (LF)	245	245 387		
Valley Confinement (confined, moderately confined, unconfined)	Moderately confined	Moderately confined	Confined	
Existing Drainage Area (acres)	39	17	23	
Perennial, Intermittent, Ephemeral	Р	P I		
NCDWR Water Quality Classification	WS-IV			
Existing Stream Classification ¹	G	Straightened C	G	
Evolutionary Trend (Simon) ¹	111 111		I	
FEMA Classification		None		
NCSAM Rating	Low	Low	Low	

¹The Rosgen classification system (Rosgen, 1994) and Simon Channel Evolution Model (Simon, 1989) are for natural streams. These channels have been heavily manipulated by man and therefore may not fit the classification category or channel evolution as described by these models. Results of the classification and model are provided for illustrative purposes only.

Table 6: Existing Wetland Summary

Wetland Summary Information							
Parameter	Wetland A	Wetland B	Wetland C	Wetland D			
Size of Wetland (acres)	0.07	0.01	0.01	0.01			
Wetland Type (non-riparian, riparian riverine or riparian non-riverine)	Riparian Riverine						
Mapped Soil Series	Pacolet	Worsham	Pacolet	Pacolet			
Drainage Class	Well drained	Poorly drained	Well drained	Well drained			
Soil Hydric Status (field/mapping)	Yes	Yes	No	No			
Source of Hydrology	Groundwater & overbank flooding	Groundwater & overbank flooding	Groundwater & overbank flooding	Groundwater			
NCWAM Rating	Low	Low	Low	Low			
Restoration or enhancement method (hydrologic, vegetative, etc.)	<u>N/A</u>	<u>N/A</u>	<u>N/A</u>	<u>N/A</u>			

Parameter	Wetland E	Wetland F	Wetland G	Wetland H	
Size of Wetland (acres)	<0.01	0.07	<0.01	0.39	
Wetland Type (non-riparian, riparian riverine or riparian non-riverine)	Riparian Riverine				
Mapped Soil Series	Worsham	Worsham	Worsham	Worsham	
Drainage Class	Poorly drained	Poorly drained	Poorly drained	Poorly drained	
Soil Hydric Status (field/mapping)	Yes	Yes	Yes	Yes	

Parameter	Wetland E	Wetland E Wetland F Wetland G		Wetland H
Source of Hydrology	Groundwater & overbank flooding	overbank overbank & overbank		Groundwater
NCWAM Rating	Low	Low	Low	Low
Restoration or enhancement method (hydrologic, vegetative, etc.)	N/A	N/A	N/A	Hydrologic, Vegetative

Parameter	Wetland I	Wetland J	Wetland K	Wetland L		
Size of Wetland (acres)	0.36	0.01	<0.01	0.02		
Wetland Type (non-riparian, riparian riverine or riparian non-riverine)	Riparian Riverine					
Mapped Soil Series	Worsham/ Winnsboro	, Winnshoro		Winnsboro		
Drainage Class	Poorly drained/Well Well drained Well drained drained		Well drained			
Soil Hydric Status (field/mapping)	Yes/No	Yes/No	No	No		
Source of Hydrology	Groundwater	Groundwater & Groundwater overbank & overbank flooding flooding		Groundwater		
NCWAM Rating	Low	Low	Low	Low		
Restoration or enhancement method (hydrologic, vegetative, etc.)	·····		N/A	N/A		

Parameter	Wetland M	Wetland N	
Size of Wetland (acres)	1.02	2.35	
Wetland Type (non-riparian, riparian riverine or riparian non-riverine)	Riparian	Riverine	
Mapped Soil Series	Worsham Worsham		
Drainage Class	Poorly drained	Poorly drained	
Soil Hydric Status (field/mapping)	Yes Yes		
Source of Hydrology	Groundwater	Groundwater	
	Low	Low	
Restoration or enhancement method (hydrologic, vegetative, etc.)	Hydrologic, Vegetative	Hydrologic, Vegetative	

4.0 Functional Uplift Potential

4.1 Wetland Functional Uplift Potential

Areas proposed for wetland re-establishment currently do not provide functions associated with wetlands due to hydrologic manipulation, agricultural activity including cattle, and maintenance of vegetation. Wetland rehabilitation areas currently provide some functions however one of the physical, chemical, or biological functions observed in jurisdictional wetlands have been impacted. Functional uplift to existing wetland areas is expected because of the proposed activities on site. Removal of the existing ditch networks will raise the water table and increase inundations periods, restoring hydrology to the proposed forested headwater wetland area. Wetland restoration areas will also be planted with native riparian wetland vegetation and areas of heavy invasive species will be treated. Cattle will be excluded from all proposed wetland and riparian areas, reducing fecal and nutrient inputs into the system. Projected activities will result in uplift of various wetland functions including increased water storage and groundwater recharge, water quality treatment, and increased aquatic and terrestrial habitat.

4.2 Stream Functional Uplift Potential

The potential for functional uplift is qualitatively described in this section using terminology from the Stream Functions Pyramid (Harman, 2012). The Stream Functions Pyramid describes a hierarchy of five stream functions, each of which supports the functions above it on the pyramid (and sometimes reinforces those below it). The five functions in order from bottom to top are hydrology, hydraulics, geomorphology, physicochemical, and biology. Worksheets were not used to determine ratings of function shown below. Alternatively, Site observations and information from existing conditions analysis was used to assume a general rate of function for project resources. Neither the Stream Functions Pyramid nor the Quantification Tool are proposed to determine success of the mitigation site.

4.3 Hydrology

Site hydrology has been altered by the management of the watershed for livestock and agricultural practices. These alterations in land cover typically result in reductions in rainfall interception and evapotranspiration which lead to increases in runoff and water yield (Dunne and Leopold, 1978), resulting in an increase in both peak flows and base flows. The watershed has adjusted to its landcover changes and the hydrologic regime has stabilized. Based on observations and the Gaston County 2035 Comprehensive Land Use Plan, it is suggested that landcover will continue to be dominated by agriculture and population growth in the rural area will continue to be low.

A stream restoration project performed at a specific site does not often result in uplift to watershed hydrology (Harman, 2012). The restoration of the headwater wetland should reduce peak flows through increased inundation times for areas within the project boundary but, the rainfall-runoff relationship will not significantly improve within the overall project watershed.

4.4 Hydraulics

Site streams, particularly Carpenter Branch and UT1, are hydraulically impaired due to their lack of consistent floodplain connection (BHR = 3.4 to 6.1) with a typical entrenchment ratio of 1.4. Reconnecting or establishing a floodplain using Priority 1 and Priority 2 restoration will provide the instream relief needed to improve the hydraulic function of the Site streams. High flow velocities, along with bankfull channel shear stresses, will be reduced. The channels will be designed to experience out of bank events at a recurrence interval typical of a naturally functioning stream system. All restoration reaches will be constructed with a bank height ratio of 1.0 to 1.1. The overall water table is expected to rise to meet the restored elevation of the stream channel. Changes in the stream dimension and improvement of floodplain connectivity will raise the hydraulic function of the Site streams.

4.5 Channel Geomorphology

Watershed impacts for agricultural and cattle have degraded the streams on Site. Apart from Carpenter Branch Reach 2, the bedform and habitat along the stream lack diversity. Upstream sedimentation from active cattle wallows limit pool formation and embed riffles with fine sediments.

There is opportunity to improve the geomorphology function on Site. Channel dimension will be stabilized on restoration reaches and the incision and bank erosion will be corrected. LWD will be added to the system through construction of in-stream structures and bank revetments, a riparian buffer will be planted, and cattle will be excluded from the stream and riparian buffer, resulting in the long-term geomorphic function of Site streams.

4.6 Physicochemical

No water quality sampling has been conducted on the Site and there are no water quality monitoring stations within the project watershed. The 2007 Catawba River Basin Restoration Priorities (RBRP) identifies sediment impairments on waterways within the basin as a current basin stressor.

Upon completion of the project, the exclusion of cattle within the Site provides a great potential to improve the physicochemical functioning of the streams. The establishment of a riparian buffer and headwater wetland system within the conservation easement will reduce runoff and erosion of nutrient-rich agricultural sediments and eventually provide stream shading, reducing water temperatures. Water will flow over in-stream structures providing reaeration. However, the potential improvements to physicochemical functioning on Site streams will not happen immediately and some aspects will not occur until a mature canopy is established. Therefore, physicochemical improvements will not be explicitly monitored for success, although visual observations should show that the improvements are in place and functioning.

4.7 Biology

Currently, no data on the existing biological communities are available. Current habitat conditions vary on the Site from poor in areas that are actively incising and altered by cattle to excellent in the proposed enhancement III reach.

There is opportunity to improve the instream and riparian habitat on Site streams and wetlands. Instream structures with a variety of rock and woody materials, pools of varying depths, and woody bank revetments will be added to the streams to increase instream habitat diversity. A wide, consistent riparian buffer that will shade the stream and improve terrestrial habitat will be planted. Wetland development will diversify the available habitats for both terrestrial and aquatic species. Despite these immediate improvements, the biological response may be slow. The ultimate level of improvement in biology may not occur until after the completion of the seven-year monitoring period. Although the biological response of the project will be difficult to quantify based on a lack of existing conditions data, improvements in biologic activity of the Site will likely be noted during visual assessments and appropriate monitoring of the project.

4.8 Overall Functional Uplift Potential

Overall, the Site has functional uplift potential, from the improvement in watershed hydrology with wetland re-establishment and riparian buffer establishment to the improvements in stream hydraulics that will be seen throughout the Site with stream restoration. Improvements in geomorphology will come with restoring streams that are suited to the valley types throughout the Site. Physicochemical and biological improvements are a likely result of the project. However, there is no existing basis for classifying the existing condition of these functions and the likely improvements will occur gradually after construction.

4.9 Site Constraints to Functional Uplift

Due to the project reach length and proximity to non-project parcel boundaries, UT4 was a constraint on the design approach of Carpenter Branch Reach 1 and UT1. Wildlands was able to obtain signed permissions from the adjacent property owner upstream of UT4 to allow for minor hydrologic trespass to reduce the constraints on the project streams. There are no other known Site constraints that will affect the functional uplift of the project. The valley width on the Site will allow for the development of pattern and dimensions to restore stable, functioning streams and wetlands. The degree to which the physicochemical and biology functions can improve on the Site is limited by the watershed conditions beyond the project limits and the presence of source communities downstream of the Site.

5.0 Regulatory Considerations

Table 7, below, is a summary of regulatory considerations for the Site. These considerations are expanded upon in Sections 5.1-5.3.

Regulatory Considerations						
Parameters	Supporting Docs?					
Water of the United States - Section 404	Yes	No	PCN ¹			
Water of the United States - Section 401	Yes	No	PCN ¹			
Endangered Species Act	Yes	Yes	Appendix 5			
Historic Preservation Act	Yes	Yes	Appendix 5			
Coastal Zone Management Act	No	No	N/A			
FEMA Floodplain Compliance	No	N/A	N/A			
Essential Fisheries Habitat	No	N/A	N/A			

 Table 7: Project Attribute Table Part 4 – Carpenter Bottom Mitigation Site

1. PCN to be provided to IRT with Final Mitigation Plan.

5.1 Biological and Cultural Resources

A Categorical Exclusion for the Carpenter Bottom Mitigation Site was approved on June 12, 2019. This document included investigation into the presence of threatened and endangered species on Site protected under The Endangered Species Act of 1973, as well as any historical resources protected under The National Historic Preservation Act of 1966. The biological conclusion for the Site, per the Categorical Exclusion research and response by US Fish and Wildlife Service, is that "any resulting incidental take that may results from the associated activities [from the project] is exempt under the 4(d) rule." All correspondence with USFWS and a list of Threatened and Endangered Species in Gaston County, NC is included in Appendix 5. The conclusion for cultural resources per the Categorical Exclusion research and response by the State Historic Preservation Office is that there are no historic resources that would be affected by this project. For additional information and regulatory communications please refer to the Categorical Exclusion document in Appendix 5.

5.2 FEMA Floodplain Compliance and Hydrologic Trespass

The Site is represented on the Gaston County Flood Insurance Rate Map Panels 3620 and 3621, with an Effective date of 9/28/2007. The Site is located outside of the Zone AE Special Flood Hazard Area (SFHA) regulatory floodplain associated with Beaverdam Creek. None of the project streams are mapped under the regulatory authority of FEMA.

Since most of the streams originate on-site, the potential for hydrologic trespass is limited. Areas with the most risk for hydrologic trespass are where UT4 enters the project and the area upstream of

jurisdictionally delineated wetland M. To address these potential issues, Wildlands obtained signed permissions from the adjacent property owner upstream of UT4 to allow for backwater to occur within the existing channel top of banks off the project property. Upstream of Wetland M, positive drainage within the existing ditch that flows through the adjacent field outside of the project area will remain and flow will be directed into the proposed wetland restoration area. Generally, outside of the proposed wetland restoration areas and the stream floodplain, the topography at the site increases quickly and there is little risk for increased inundation.

5.3 401/404

Impacts to existing wetlands will be minimized or avoided as much as possible. The majority of these wetlands are in areas of cattle pasture. Generally, existing wetlands will be improved by planting native vegetation and excluding livestock via removal. Project streams and wetlands will be protected in perpetuity under the conservation easement placed on the properties. During construction safety fence will be installed to prevent unintended impacts of on-site wetlands that are located outside of the proposed limits of disturbance. This fencing will be denoted in the final plans.

Table 8 estimates the anticipated impacts to wetland areas on this project. The Pre-Construction Notification, including this data, will be submitted to the IRT with the Final Mitigation Plan.

			Permanent (F	P) Impact	Temporary	(T) Impact
Jurisdictional Feature	Classification	Acreage	Type of Activity	Impact Area (acres)	Type of Activity	Impact Area (acres)
Wetland A		0.07	-	-	Road Naturalization	0.007
Wetland B		0.01	-	-	Floodplain Grading	0.012
Wetland C		0.01	Conversion to Stream Resource	0.001	Floodplain Grading	0.012
Wetland D		0.01	-	-	Floodplain Grading	0.011
Wetland E	Headwater Forest	0.001	Fill, Floodplain Grading	0.001	-	-
Wetland F		0.07	-	-	Road Naturalizatio/ Floodplain Grading	0.009
Wetland H		0.39	Fill	0.012	Construction Access/Floodp lain grading	0.150
Wetland I		0.36	Conversion to Stream Resource	0.031	Construction Access/Floodp lain Grading	0.332

 Table 8: Estimated Impacts to Project Wetlands – Carpenter Bottom Mitigation Site

			Permanent (F) Impact	Temporary	(T) Impact
Jurisdictional Feature	Classification	Acreage	Type of Activity	Impact Area (acres)	Type of Activity	Impact Area (acres)
Wetland J		0.01	Fill/Floodplai n Grading	0.011	-	-
Wetland K		0.01	-	-	Construction Access	0.007
Wetland L	Headwater	0.02	Conversion to Stream Resource	0.004	Floodplain Grading	0.015
Wetland M	Forest	1.02	Fill Ditch	0.237	Road Naturalization /Construction Access	0.139
Wetland N		2.35	Fill Ditch	0.224	Construction Access, Minor Grading	1.990

6.0 Mitigation Site Goals and Objectives

The project aims to improve stream and wetland functions at a Site level as described in Section 4 through stream restoration, cattle exclusion, buffer re-vegetation, rehabilitation of existing wetlands, and the re-establishment of relic wetland areas. Project goals are desired project outcomes and are verifiable through measurement and/or visual assessment. Objectives are activities that will result in the accomplishment of goals. The project will be monitored after construction to evaluate performance as described in Section 8 of this report. The project goals and related objectives are described in Table 9.

Goal	Objective	Expected Outcomes	Function Supported
Exclude livestock from stream channels and wetlands.	Decommission pastures on Site and exclude livestock via removal from stream channels, wetlands, and riparian areas.	Reduce direct fecal coliform and nutrient inputs to the Site streams. Reduce sediment inputs from bank erosion. Reduce shear stress on channel boundary. Eliminate cattle trampling of wetlands.	Geomorphology, Physicochemical, Biology
Improve the stability of stream channels.	Reconstruct stream channels with stable dimension, pattern, and profile. Reconnect streams to existing floodplain. Add bank revetments and in-stream structures to protect restored streams.	Reduce sediment inputs from bank erosion. Reduce shear stress on channel boundary. Increase floodplain engagement.	Hydrology, Hydraulics, Geomorphology, Biology

Table 9: Mitigation Goals and Objectives – Carpenter Bottom Mitigation Site

Goal	Objective	Expected Outcomes	Function Supported
Improve instream habitat.	Install habitat features such as constructed steps, constructed riffles, and brush toe on restored reaches. Add woody materials to channel beds. Construct pools of varying depth.	Increase and diversify available habitats for macroinvertebrates, fish, and amphibians. Promote aquatic species migration and recolonization and increase in biodiversity over time. Add complexity including LWD to the streams	Geomorphology, Physicochemical, Biology
Restore wetland function and hydrology.	Restore wetlands through re- establishment of hydrology. Remove the drainage effects of agricultural ditching and maintenance.	Raise water table and hydrate riparian wetlands.	Hydrology, Physicochemical, Biology
Restore and enhance native floodplain and wetland vegetation.	Plant native tree, shrub, and understory species in riparian and proposed wetland restoration zones.	Reduce sediment inputs from bank erosion and runoff. Increase nutrient cycling and storage in floodplain. Provide riparian and wetland habitat. Add a source of LWD and organic material to Site streams. Support all stream functions	Hydrology, Hydraulic, Geomorphology, Physicochemical, Biology
Permanently protect the project site from harmful uses.	Establish conservation easements on the Site.	Protect Site from encroachment on the riparian corridor and direct impact to streams and wetlands. Support all stream functions	Hydraulic, Geomorphic, Physicochemical, Biology

7.0 Design Approach and Mitigation Work Plan

7.1 Design Approach Overview

The design approach for this Site was developed to meet the goals and objectives described in Section 6 which were formulated based on the potential for uplift described in Section 4. The design is also intended to provide the expected outcomes in Section 6, though these are not tied to performance criteria. Carpenter Branch and its associated tributaries will be reconnected with their active floodplains and reconstructed with stable dimension, pattern, and profile. The headwater wetland system will be restored (either re-established or rehabilitated) by plugging and filling the agricultural drainage swales. The floodplains and wetlands will be planted with native tree species and invasive species will be treated where necessary. Instream structures will be constructed in the channels to help maintain stable channel morphology, improve aquatic habitat, and enhance channel bedform. Cattle will be excluded from the entire project area via removal, eliminating wallow areas within the headwater streams and wetlands. The entire project area will be protected in perpetuity by a conservation easement. Table 10 summarizes the stressors of each project reach and the mitigation activities expected to address those stressors.

The design approach for this Site utilized a combination of analog and analytical approaches for stream restoration, and also relies on empirical data and prior experience and observations. Reference reaches and reference wetlands were identified to serve as a portion of basis for design. Channels were sized based on design discharge analysis which uses a combination of empirical and analytical data as

described within this report. Wetland potential and hydrology was assessed with existing groundwater gage data, reference wetland data, and soils analysis. These design approaches have been used on many successful Piedmont restoration projects and are appropriate for the goals and objectives for this Site.

Project Reach	Primary Stressors/Impairments	Approach	Mitigation Activities
Carpenter Branch Reach 1	Poor Buffer, bank erosion, cattle impacts, stream incision, lacking bedform (pool habitat)	R	Restoring appropriate dimension, adding bedform with instream structures, planting buffers, excluding cattle, protecting with conservation easement.
Carpenter Branch Reach 2	Minor cattle impacts	EIII	Excluding cattle and protecting with conservation easement.
UT1	Poor Buffer, bank erosion, cattle impacts, stream incision, lacking bedform.	R	Restoring appropriate dimension, adding bedform with instream structures, planting buffers, excluding cattle, protecting with conservation easement.
UT2	Poor Buffer, bank erosion, cattle impacts, stream incision, invasive species in riparian buffer.	R	Restoring appropriate dimension, planting buffers, excluding cattle, protecting with conservation easement, treating invasive species.
UT3	Poor Buffer, bank erosion, cattle impacts, stream incision.	R	Restoring dimension, pattern, and profile, planting buffers, protecting with conservation easement
UT4	Encapsulated in existing culvert	R	Daylighting stream and restoring natural channel features including dimension and bedform.
Wetland Re- establishment	Maintained vegetation for agriculture, decreased hydrology due to drainage features, cattle impacts.	R	Plugging/filling drainage features, planting native wetland community, treating invasive species, excluding cattle.
Wetland Rehabilitation	Existing drainage features, maintained vegetation, invasive species, cattle impacts (wallowing and trampling).	R	Plugging/filling drainage features, planting native wetland community, treating invasive species, excluding cattle.

Table 10: Stream and Wetland Stressors and Restoration Approach

7.2 Reference Streams

Reference streams provide geomorphic parameters of a stable system, which can be used to inform pieces of design of for stable channels of similar stream types in similar landscapes and watersheds. Six reference reaches were identified for this Site and used to support the design of the project streams (Figure 7). These reference reaches were chosen because based on their similarities to the Site streams including drainage area, valley slope, morphology, and bed material. Reference geomorphic parameters for these reaches are summarized in Appendix 4. The references to be used for the specific streams are shown in below in Table 11. A description of each reference reach is included below.

Table 11: Stream Reference Data Used in Development of Design Parameters: Carpenter Bottom Mitigati	on Site
---	---------

	Design Stream	Carpenter Branch	UT1	UT2	UT3	UT4
Reach		1				
Reference Stream	Stream Type					
Reedy Creek Nature Preserve	B4c		х			

	Design Stream	Carpenter Branch	UT1	UT2	UT3	UT4
	Reach	1				
Reference Stream	Stream Type					
UT to Lyle Creek	C5			Х	Х	
Foust Upstream	C4	х				
UT to S. Fork Catawba	E5	Х				
UT to Sandy Run	E4		х		Х	х
UT to South Crowders	E4		Х	Х		Х

7.2.1 Reedy Creek Nature Preserve – South Fork

The Reedy Creek Nature Preserve – South Fork reference reach is located in northeast Mecklenburg County, NC on the publicly-owned Reedy Creek Nature Preserve and Park. The stream receives drainage from a 0.2 square mile watershed. The stream's width-to-depth ratio ranges from 6.0 to 11.7 and the overall channel slope is 0.67%. Habitat features include meander pools, pools formed around logs and debris, rock riffles, root mats, and woody debris in the stream. The reach classifies as a B4c stream.

7.2.2 Foust Upstream

Foust Creek is located within the Carolina Slate Belt region of the Piedmont, approximately 12 miles south of Burlington, NC, in Alamance County. The stream receives drainage from a 1.4 square mile watershed. Wildlands collected riffle cross-sections, pool cross-sections, and a longitudinal profile representative of the reference reach. The stream's width-to-depth ratio ranges from 14.3 to 15.7. The Foust Creek reference site classified as a C4 channel.

7.2.3 UT to Sandy Run

UT to Sandy Run is located in Cleveland County, 45 miles west of Charlotte, NC. This site is classified as an E4 stream type and has a drainage area of 0.15 square miles. The valley slope is 2.0% and the channel slope is 1.5%. The bed material d_{50} for the reach is 19 mm. While the stream formally classifies as an E-type channel, the stream and valley slope are steeper than typical E channels, and reference conditions observed in the field appeared analogous to B channels on-site.

7.2.4 UT to South Crowders

UT to South Crowders is a perennial stream located in Crowder Mountain State Park that receives 0.22 square miles of drainage from the forested mountain side. The stream is quite sinuous given the 2.57% valley, with a sinuosity of 2.2. UT to South Crowders is an example of a classic, small E4 stream within a higher sloped setting, with a width to depth ratio ranges from 5.7 to 8.2 and a high entrenchment ratio ranging from 3.7 to 4.2. The stream is fully connected to its alluvial floodplain, and supports varied habitats including root mats, deep meander pools, rock riffles, and woody debris in the channel.

7.2.5 UT to South Fork Catawba – Vile Preserve

UT to South Fork Catawba River - Vile Preserve is a perennial stream located in the floodplain of the South Fork Catawba River. The stream flows through a broad, flat, wetland floodplain complex, which receives runoff from adjacent agricultural uplands. The stream is completely connected to the floodplain wetlands with a bank height ratio of 1.0 and an entrenchment ratio over 30. The reach has a low slope with a sandy substrate and classifies as a Rosgen E5 stream type. The channel dimension, interaction with the floodplain wetland, and similar stream substrate make it an applicable reference reach for design of the streams within the wetlands on the West side of the project.

7.2.6 UT to Lyle Creek

UT to Lyle Creek is a perennial stream flowing through the broad, flat floodplain of Lyle Creek. UT to Lyle's watershed is wooded, and the stream is fully connected to the floodplain with a bank height ratio

of 1.0 and an entrenchment ratio of over 2.5. The width-to-depth ratio ranges from approximately 15 to 18, and the overall valley slope is approximately 0.8%. UT to Lyle Creek has a sinuosity of 1.1 and classifies as a straight, C5 stream channel. In-stream habitat features within this reach include shallow pools, woody debris, and small sections of tree roots.

7.3 Design Channel Morphological Parameters

Reference reaches were a primary source of information to develop the pattern and profile design parameters for the streams. Ranges of pattern parameters were developed within the reference reach parameter ranges with some exceptions based on best professional judgement and knowledge from previous projects. For example, for meandering C designs, radius of curvature ratio is kept above 1.8 on all reaches and meander width ratio is kept above a 2.4. Meandering designs have pool widths to be 1.2 to 1.5 times the width of riffles to provide adequate point bars and riffle pool transition zones. Wildlands has found these minimum ratios to support stable geometry. Designer experience was used for pool design as well. Pool depths were designed to be a minimum of 3 times deeper than riffles to provide habitat variation. Cross-section parameters such as area, depth, and width were designed based on the design discharge and stable bank slopes. Key morphological parameters for the Site are listed in Table 12 and Table 13. Complete morphological tables for existing, reference, and proposed conditions are in Appendix 6.

	Car	penter Branch Reac	h 1	UT1			
Parameter	Existing	Reference: UT to S. Fork Catawba	Proposed	Existing	Reference: UT to South Crowders	Proposed	
Valley Width (ft)	14	N/A	17 - 26	4 - 8	N/A	11 - 18	
Contributing Drainage Area (acres)	180	602	180	20	141	20	
Channel/Reach Classification	G4	E5	C4	G4/5	E4	C4	
Design Discharge Width (ft)	10.2	6.1 - 6.2	7.5	3.1	6.1-8.4	5.0	
Design Discharge Depth (ft)	0.7	0.7 - 0.8	0.6	0.6	1.0 - 1.1	0.4	
Design Discharge Area (ft ²)	7.0	4.5 - 5.3	4.4	1.8	6.4 - 8.7	1.9	
Design Discharge Velocity (ft/s)	2.0	11.0	3.2	3.8	2.9	3.3	
Design Discharge (cfs)	14	54	14	7	22	6	
Water Surface Slope (ft/ft)	0.0130	0.0068	0.0120	0.0258	0.0091	0.0200	
Sinuosity	1.1	1.0	1.2	1.1	2.2	1.3	
Width/Depth Ratio	15	7 – 8	12.5	5	6 – 8	12.5	
Bank Height Ratio	3.4	1.0	1.0 - 1.1	6.1	1.4 - 2.1	1.0 - 1.1	
Entrenchment Ratio	1.4	3.0+	2.2 – 3.5	1.4	3.7 – 4.3	2.2 – 3.5	

Table 12: Summary	of Morpholo	gical Parameters-	Carpenter	Bottom M	itiaation Site
Table III Galilla		Brearrananceccio	carpenter	2011011111	ligation site

		UT2			UT3	
Parameter	Existing	Existing Reference: UT to Lyle Creek		Existing	Reference: UT to Sandy Run	Proposed
Valley Width (ft)	N/A	N/A	13 - 21	N/A	N/A	13 - 21
Contributing Drainage Area (acres)	39	160	39	17	96	17
Channel/Reach Classification	G4/5	C5	C4	G4/5	E4	C4b
Design Discharge Width (ft)	4.2	7.0 - 8.6	6.0	9.5	7.3 – 7.8	6.0
Design Discharge Depth (ft)	0.8	0.5	0.5	0.3	0.7 – 0.8	0.5
Design Discharge Area (ft ²)	3.4	3.5 – 4.1	2.9	2.8	5.7 – 6.2	2.9
Design Discharge Velocity (ft/s)	3.5	4.7	3.0	2.2	3.4	3.8
Design Discharge (cfs)	12	18	8	6	20	8
Water Surface Slope (ft/ft)	0.0116	0.0057	0.008	0.026	0.0150	0.023
Sinuosity	1.0	1.1	1.2	1.0	1.6	1.2
Width/Depth Ratio	5	15 – 18	12	32	7 – 10	13
Bank Height Ratio	1.6	1.0	1.0 - 1.1	1.3	1.7	1.0 - 1.1
Entrenchment Ratio	N/A	5.7 – 6.4	2.2 – 3.5	N/A	1.6 - 2.1	2.2 – 3.5

Table 13: Summary of Morphological Parameters – Carpenter Bottom Mitigation Site

Existing geomorphic parameters are not provided for UT4 because the entirety of the existing reach is within an existing culvert. Proposed geomorphic design ratios for UT4 are included in Appendix 6.

7.4 Design Discharge Analysis

Multiple methods were used to develop bankfull discharge estimates for each of the project restoration reaches: the NC Rural Piedmont regional curve (Harman et al., 1999), NC Piedmont/Mountain regional curve (Walker, unpublished), a Wildlands regional USGS flood frequency analysis, a site-specific reference reach curve, existing bankfull indicators using Manning's equation, and data from previous successful design projects. The resulting values were compared, and best professional judgment was used to determine the specific design discharge for each restoration reach. Each data source is plotted on Figure 8 to show the relationship of the data to the design discharge selections.

Determining the bankfull discharge for Carpenter Branch relied heavily on existing bankfull indicators and onsite reference riffle cross-sections. Existing cross-sections along Carpenter Branch suggest a channel forming discharge significantly less than the values estimated when using the other listed methods. This decrease in discharge can be attributed to the attenuation of water in the wetland upstream of Carpenter Branch. Wetland restoration efforts will furthermore increase the attenuation of water, and therefore a relatively low bankfull discharge was determined for Carpenter Branch.

7.4.1 Regional Curve Data

Discharge was estimated using the published NC Rural Piedmont Curve (Rural Data on Figure 8) as well as the updated curve for rural Piedmont and Mountain streams, shown as the Alan Walker Curve on Figure 8.

7.4.2 Wildlands Regional USGS Rural Piedmont Calculator

Wildlands developed a regional flood frequency analysis tool that tailored the USGS 2009 publication *Magnitude and Frequency of Rural Floods in the Southeastern United States, through 2006* to the Piedmont of North Carolina. Of the 103 stations referenced in the publication, 23 were used in the development of the tool. To fill gaps in data, five additional stations were added by Wildlands to

represent streams with drainage areas less than one square mile. The Hosking and Wallis homogeneity test was performed in R[©] to identify the most appropriate gages based on homogeneity (Hosking and Wallis, 1993). The gages used were:

- USGS 02096740 Gun Branch near Alamance, NC (DA = 4.06 mi²)
- USGS 02096846 Cane Creek near Yadkin Grove, NC (DA = 7.54 mi²)
- USGS 02097010 Robeson Creek near Pittsboro, NC (DA = 1.71 mi²)
- USGS 02101030 Falls Creek near Bennett, NC (DA = 3.43 mi²)
- USGS 0210166029 Rocky River at SR1300 near Crutchfield Crossroads, NC (DA = 7.42 mi²)

The data from these 28 gage stations were used to develop flood frequency curves for the 1.2-year and 1.5-year recurrence interval discharges. These relationships can be used to estimate discharge of those recurrence intervals for ungaged streams in the same hydrologic region, and were solved for each project reach's discharge with the drainage area as the input. The discharge estimates are shown on Figure 8 as the USGS Rural Piedmont Calculator 1.2-yr Predictions.

7.4.3 Site Specific Reference Reach Curve

Six reference reaches were identified for this project. Each reference reach was surveyed to develop information for analyzing drainage area-discharge relationships as well as development of design parameters. Stable cross-sectional dimensions and channel slopes were used to compute a bankfull discharge with the Manning's equation for each reference reach. The resulting discharge values were plotted with drainage area on Figure 8 (Reference Reach Curve) and compared the other discharge estimation methods.

7.4.4 Existing Bankfull Indicators (Manning's Equation)

A riffle cross-section was surveyed on each design reach on the Site, with the exception of UT4, totaling 4 cross-sections. Bankfull indicators were identified in the field during this survey. Manning's equation was used to calculate a corresponding discharge using the survey data for channel slope. It can be difficult to identify bankfull features on disturbed reaches which can lead to uncertainty in the results. For this reason, the results from this method were considered but were not weighted heavily when determining the bankfull discharge.

7.4.5 Design Discharge Analysis Summary

The design discharges for each restoration project reach were developed so that the reconstructed channels will flood with the desired frequency. Results from each of the methods described above were evaluated and compared to the other methods. For this analysis, the most emphasis was placed on the results from the regional flood frequency (1.2-year event) and the piedmont regional curve in selecting a design discharge for UT1, UT2, UT3, and UT4, while existing cross-sections were analyzed to select a design discharge for Carpenter Branch. Table 14 gives a summary of the discharge analysis.

,							
		Carpenter Branch Reach 1	UT1	UT2	UT3	UT4	
DA (acres)		180	20	39	17	23	
DA (sq. mi.)		0.28	0.03	0.06	0.03	0.04	
NC Rural Piedmont Regional Curve (cfs)		35	7	10	10	7	
Alan Walker Curve (cfs)		20	4	5	5	4	
Wildlands Regional USGS 1.2-year event		30	6	9	9	6	
Flood Frequency Analysis (cfs)	1.5-year event	44	9	13	13	9	

Table 14: Summary of East Side Design Discharge Analysis – Carpenter Bottom Mitigation Site

	Carpenter Branch Reach 1	UT1	UT2	UT3	UT4
Site Specific Reference Reach Curve	27	6	8	8	6
Max Q from Manning's Eq. from XS survey (cfs)	237	285	21	14	N/A
Final Design Q (cfs)	14	6	8	8	6

7.5 Sediment Transport Analysis

The watershed was assessed via aerial photography and field reconnaissance to characterize the current land cover and potential sediment sources. As discussed in Section 3.2, the majority of the project watershed is dominated by pasture, agriculture fields, and forest. Primary potential sediment sources include overland runoff from agricultural fields and active streambank erosion.

Project streams were visually assessed to obtain qualitative data on aggradation and degradation within the channels. The presence of fine sediment throughout the project streams indicate that the current agricultural practices and unstable stream conditions are overloading the carrying capacity of the project streams and their ability to move fine sediment. Observations of incised channels, actively eroding stream banks, and cattle wallowing within headwater streams indicate that actively degrading channels are a major source of fine sediment to the stream. Restoring the project streams and valley will address the major local sediment sources by protecting stream banks, removing unconsolidated alluvial deposits, reducing shear stress, and eliminating sediment from livestock trampling. The revegetated headwater wetland system will capture agricultural sediments further reducing local sediment loads. Buffers will be converted from active cattle pasture to undisturbed native woody vegetation, stabilizing potential floodplain sediment sources. By addressing local sediment sources, capacity issues currently observed on-site should be dramatically improved post construction. The focus of sediment transport analysis for design was to verify that the designed channels will have the competence to pass the sediment that continues to be delivered by the watershed while still maintaining channel stability after local sediment issues have been addressed at the Site.

7.5.1 Competence Analysis

Competence analysis was performed for Carpenter Branch Reach 1, comparing existing and proposed shear stress, mean depth, and slope. The evaluation was performed to determine parameter requirements to move the maximum particle of the existing bed material sampled at the Site. Carpenter Branch Reach 1 is representative of site conditions and contains the majority of Site assets. As such, sediment transport analysis was not performed on the associated unnamed tributaries. Additionally, the data was used to evaluate whether channel shear stress exceeds required maximum values and could potentially cause channel degradation of the existing bed material without further supplementing coarser material within the channel. The analysis utilized standard equations based on a methodology using the Shields (1936) curve and Andrews (1984) equation described by Rosgen (2001). The results of the analysis are shown in Table 15.

	Carpenter Br	anch Reach 1
	Existing	Proposed
Dbkf (ft)	0.7	0.6
Schan (ft/ft)	0.0130	0.0120
Bankfull Shear Stress, t (lb/sq ft)	0.49	0.42
Dmax Bar/Subpavement (mm)	30	30

 Table 15: Results of Competence Analysis – Carpenter Bottom Mitigation Site

	Carpenter Branch Reach 1		
	Existing	Proposed	
Movable particle size (mm) Shields/Rosgen	37/90	32/81	
Predicted Shear Stress to move Dmax Shields/Rosgen	0.40/0.11	0.40/0.11	

While the proposed design reduces shear stress of the bankfull channel, both the Shield's and Rosgen's results indicate that the proposed stream design exceeds the required shear stress to intiate movement of the existing bed particles. While the channel should have adequate boundary shear stress to move most particles in the subpavement layer and theoretically pass the largest particle supplied by the watershed, if bed substrate material is not supplemented there would be potential for downcutting and erosion to occur within the stream. The results were used to inform further design of the reach.

The excess shear estimated within the Site stream requires larger material ($D_{max} > 3.5$ -inches) be incorporated within constructed riffles proposed for the Site. The proposed D_{50} and D_{100} for the constructed riffles on all stream reaches will be sized accordingly to prevent channel degradation. Additionally, to increase stabilization, structures such as rock/log sills, steps, J-hooks, and vanes will be installed within the channel to provide grade control. Brush toes will also be installed to increase roughness within the channel and reduce boundary shear stress along outside meanders. These measures will ensure a stable pavement layer that also allows for bed load material to be active during isolated events. It should also be noted that the analysis on the existing channel was only performed up to a bankfull event, and that the highest shear stresses the existing channel is experiencing occurs during flow events beyond bankfull in which channel incision limits floodplain connection and exposes stream banks and beds to extreme stress. The reconstruction of appropriate channel dimension will eliminate these extreme shear stress events through the reconnection of an active floodplain.

7.6 Project Implementation

7.6.1 Overview

The mitigation approaches proposed for the streams and wetlands on Site have been developed to achieve the potential for functional uplift relative to the existing conditions on the Site (described in Section 4). The site includes elements of stream restoration, stream enhancement, wetland re-establishment, and wetland rehabilitation as described below. Figure 9 shows the approaches proposed for the project reaches.

Restoration reaches will be constructed as Priority 1 and Priority 2. Restoration reaches have been designed to create stable, functional stream channels based on reference parameters, design discharge analysis, and sediment transport analysis. Dimension, pattern and profile have been designed for all restoration reaches to provide a cross-sectional area sized for frequent overbank flows, a stable bed with variable bedforms, well-vegetated bank slopes, and improvements to aquatic habitat. Improved vertical and lateral stability will reduce stream channel erosion. Diverse bedforms will be established using in-stream structures appropriate for the geomorphic setting. These structures will provide grade control to prevent incision and serve as habitat features. Pools will have varied depths to increase habitat diversity.

In-stream structures for restoration reaches will include riffles, boulders sills, log sills, log j-hooks, and brush toe. Constructed riffles will be built from excavated on-site rock if it meets specifications and is available. Quarry stone may be used if on-site materials are not sufficient. Riffle material will also incorporate woody material and logs, which will provide pore spaces within the riffles, benefiting instream habitat and the hyporheic exchange process. Using a diverse range of constructed material and types will provide grade control, habitat diversity and will create varied flow vectors. Log j-hooks will

direct the flow away from the banks, while providing grade control and habitat variability. Log and boulder sills will be used to allow for small grade drops across pools. Brush toe will be used in select meander bends to help reduce erosion, encourage pool maintenance, and provide varied pool habitat.

The Site includes riparian riverine headwater seep, pocket, and floodplain wetlands that will be reestablished and rehabilitated. Existing agricultural drainage ditches/swales will be filled to provide hydrologic uplift, appropriate forested wetland vegetation will be established, and invasive species will be treated.

7.6.2 Carpenter Branch Reach 1 and 2

Carpenter Branch Reach 1 will be restored through a combination of Priority 1 and Priority 2 restoration. Due to profile and earthwork constraints, a Priority 1 approach cannot be used along the entire reach and a Priority 2 approach is required at transitions as well as at the confluences of some tributaries. The channel will be raised and a floodplain bench will be established with minimum bank height ratios of 1.0-1.1 and minimum entrenchment ratios of 2.2. The channel is designed as a Rosgen C-type stream with moderate sinuosity. In-stream structures will be added for stream stability, grade control and habitat variability. A native vegetation riparian buffer will be established, and invasive vegetation will be treated. Livestock will be excluded along the entire length of the reach.

Carpenter Branch Reach 2 is slated for an enhancement III approach. The reach is currently stable and exhibits mature vegetation, stable dimension, and variable bedrock bedform. Desirable aquatic habitat is present throughout the reach. Invasive vegetation will be spot treated as needed along the reach.

7.6.3 UT1

UT1 will be restored through a combination of Priority 1 and Priority 2 restoration. The channel will be raised and reconnected to a constructed floodplain bench or relic floodplain where possible. In-stream structures will be installed to provide bedform, a riparian buffer will be established for enhanced stability, and livestock will be excluded to eliminate this water quality stressor. At the upstream extent, a portion of ephemeral channel within the conservation easement will be converted to a step-pool stormwater conveyance system to address potential storm drainage flowing from an existing culvert. No maintenance is expected to be required for the step-pool stormwater conveyance system based on the minimal drainage that it will receive.

7.6.4 UT2 and UT3

UT2 and UT3 are headwater streams which begin within the proposed conservation easement. Both streams originate at the downstream end of the headwater wetland. The upstream extent of the streams will be transitioned from small, shallow swales to a dimension indicative of Rosgen C-type channels. The channels will be restored through Priority 1 restoration and will be raised to reconnect them to their relic floodplains as they meander towards Carpenter Branch with moderate slope and sinuosity through unconfined valleys. In-stream structures will be used to promote stability, a native riparian buffer will be established, livestock will be excluded, and invasive species will be treated along both reaches. These headwater perennial and intermittent streams provide a key role in overall stream health and restoration of these streams will help protect larger channels restored downstream.

7.6.5 UT4

UT4 will be daylighted and removed from an existing culvert within the limits of the conservation easement. The channel will be restored using a Priority 1 restoration approach. A stable pattern and profile will be established, and in-stream structures will be added to promote a diverse bedform. A native riparian buffer will be planted, and invasive species will be treated along the reach.

7.6.6 Wetland Re-establishment

Relic wetland areas will be re-established on the Site through hydrologic uplift, establishment of forested wetland plant communities, cattle exclusion, and roughening to promote increased retention times. Hydrology within proposed wetland re-establishment areas has been altered through agricultural ditching and increased drainage effects of channels at the downstream extent. Restoration of these headwater channels will promote increased hydrology appropriate for a Piedmont forested wetland system. Vegetation within wetland re-establishment areas has been maintained in pasture and hay has been grazed by cattle for multiple seasons. Increased roughness from vegetation will reduce surface drainage effects within the wetland and allow for development of facultative herbaceous and woody species.

7.6.7 Wetland Rehabilitation

Jurisdictionally delineated areas including wetlands H, I, M and N are slated for rehabilitation. Existing hydrology within these areas will be improved by filling the existing network of drainage ditches and roughening the surface of these areas to promote increased retention times. The restoration of existing incised streams which connect the network of ditches will raise overall water table elevations within the existing wetland areas which will also improve hydrologic function. Rehabilitation areas which are dominated by herbaceous vegetation and grasses will be planted with appropriate woody species to establish a forested wetland system. In previous cutover areas (primarily Wetland N) invasive and upland species, including hardy orange and longleaf pine *(Pinus palustris)* will be treated. Cattle will also be excluded from all existing wetland areas, eliminating wallow areas which are currently acting as nutrient and sediment sources for the project receiving waters.

7.7 Proposed Wetland Design Overview

The proposed design includes the restoration of 9.661 acres of historically altered wetlands which will be re-established and rehabilitated at the headwaters of Carpenter Branch. Wildlands performed a multilevel analysis of the proposed wetland area to holistically understand the ditching and anthropogenic effects, current and proposed hydrologic conditions, and current and potential hydric soil development.

7.7.1 Jurisdictional Investigation

As outlined in Section 3.4.1 and Table 6 of this report, Wildlands investigated potential waters of the United States within the project area. These areas were delineated using the USACE routine On-Site Determination method presented in the 1987 Corps of Engineers delineation manual, the subsequent Regional Supplement for the Eastern Mountains and Piedmont Region, groundwater hydrology data, and the evaluator's best professional judgement. All jurisdictional Waters of the U.S. were located by sub-meter GPS. The Preliminary Jurisdictional Determination (PJD) package was submitted on March 24, 2020. The approved PJD was issued to Wildlands on May 20, 2020 and is included in Appendix 3.

7.7.2 Hydric Soils Investigation

To ensure adequate potential for the development of hydric soils within the proposed wetland restoration areas, an initial evaluation of Site soils was performed using Natural Resources and Conservation Service (NRCS) web soil survey mapping. Soils within the proposed wetland restoration areas are mapped as Worsham Loam (Figure 6). The Worsham soil series is a poorly drained soils series with very slow permeability. Worsham soils are listed on the North Carolina hydric soils list for Gaston County in low sloped and depressional areas meeting hydric criteria 2.

To confirm the online mapping, a licensed soil scientist (LSS) performed a preliminary soil evaluation of the Site along with Wildlands personnel on April 16, 2018 and also follow up investigation to further confirm the presence and existence of hydric soils on April 24, 2020. Hand auger borings were advanced

on the property to approximate the location and extent of hydric soils. Borings were evaluated to assess the presence or absence of hydric soil indicators utilizing the NRCS Field Indicators of Hydric Soils in the United States – A Guide for Identifying and Delineating Hydric Soils (version 7.0, 2010). Based on the preliminary and follow up site visits, reports and figures included in Appendix 7 were prepared outlining the potential for wetland restoration on Site. The soils investigation confirmed the NRCS web soil survey mapping of the Worsham soil series. Soil borings performed within the study area were identified as hydric soils meeting the F3 – depleted matrix hydric soils indicator. Depth to hydric soil indicators were less than 10-inches sitewide and in most cases were less than 2" below the land surface. Due to the onsite ditching, many areas exhibiting hydric soil indicators did not exhibit primary or secondary wetland hydrology indicators.

7.7.3 Hydrologic Monitoring and Evaluation

Six groundwater gages were installed to evaluate the existing hydrologic conditions of the Site (Figure 3). As much as possible, groundwater gages were placed in transects to allow evaluation of the water table across the proposed wetland areas. Groundwater gages one through four were placed within the area proposed for wetland re-establishment, groundwater gage 5 was placed within the main portion of the project proposed for wetland rehabilitation, and groundwater gage 6 was placed just outside the proposed wetland restoration boundary.

Groundwater gages collected data at the Site between March 1, 2019 and October 3, 2019. The defined growing season based on the Gaston County, North Carolina WETS table for 50% probability of soil temperatures greater than 28 degrees Fahrenheit is March 15th to November 14th representing a 250-day growing season. Table 1 listing wetland saturation thresholds provided in the Notification of Issuance of *Guidance for Compensatory Stream and Wetland Mitigation Conducted for the Wilmington District* (October 24, 2016) defines a wetland saturation threshold for Worsham soils between 10% and 12%. Based on the defined growing season outlined above, wetland saturation thresholds for the project should range between 25 and 30 consecutive days of inundation within the defined growing season at the Site to provide minimum hydrology for adequate wetland processes to occur. Given that Wildlands had nearly an entire growing season of groundwater gage data across the Site, an evaluation of existing water table elevations was performed based on the installed gages.

An evaluation of the data from the installed existing groundwater gages is shown below in Table 16 and plots of the existing groundwater data are provided in Appendix 7. Based on the evaluated data, groundwater gages 1, 3, and 5 saw consecutive inundation periods of 48-days, 48-days, and 73-days, respectively. For these gages, this represents 19.6%, 19.6%, and 29.8% of the growing season for the three gages. Groundwater gages 2 and 4, both show consecutive inundation periods of 22-days, representing 9% of the growing season. Groundwater gage 6 recorded 13 days of consecutive inundation within the growing season representing 5.3%. Gage data collected within areas proposed for wetland rehabilitation and re-establishment show that the Site is very close if not currently getting adequate hydrology to begin to allow wetland processes to occur. The identification of shallow hydric soils, and the amount of delineated wetland features further supports that the Site is either currently meeting a wetland hydrologic regime or is just outside the hydrologic regime required for wetland processes to occur. Based on Wildlands observations, major limiting factors for wetland processes at this point, are cattle access, agricultural ditching, a lack of roughness due to vegetative maintenance, and drainage effects from incised headwater streams at the downstream extent. The proposed mitigation approach of filling the agricultural swales and ditches and shallowing the headwater channels at the downstream extent of the wetland system will raise hydrology within the currently ditched areas. Additionally, roughening of the Site and increased roughness from woody vegetation will slow surface drainage form the proposed wetland areas and increase retention times at the wetland surface.

Wildlands generated the proposed wetland rehabilitation and re-establishment boundaries based on field indicators and hydrology data that supports that proposed areas will meet minimum saturation thresholds. Locations of proposed groundwater gages for post construction monitoring were chosen so that data can be compared between existing and proposed groundwater gages and confirm general hydrologic uplift at the Site. The existing gage data, along with the jurisdictional delineation, and LSS investigation provides support that if drainage effects on Site are reduced, proposed wetland areas will meet minimum required hydrology standards.

Gage	Consecutive Days in Growing Season Wells Met Groundwater Depth Criterion Under 2019 Rainfall Conditions (Days)	Consecutive Percent Growing Season Wells Groundwater Depth Criterion Under 2019 Rainfall Conditions (%)	Evaluated Dates	Wetland Approach
1	48	19.6%	3/1/19 to 10/3/19	Re-establishment ¹
2	22	9.0%	3/1/19 to 10/3/19	Re-establishment
3	48	19.6%	3/1/19 to 10/3/19	Re-establishment
4	22	9.0%	3/1/19 to 10/3/19	Re-establishment
5	73	29.8%	3/1/19 to 10/3/19	Rehabilitation
6	13	5.3%	3/1/19 to 10/3/19	Outside Proposed Wetland Restoration Area
Ref ²	151	65%	2016 to 2019 Growing Seasons	Reference

¹Groundwater gage 1 is located near the boundary of the wetland re-establishment and rehabilitation.

²Data in the table represents the average consecutive days and percent of growing season over 4 analyzed growing seasons of reference well data.

7.7.4 Reference Wetland

To further evaluate the Site hydrologic regime, a reference wetland was identified approximately 6.7 miles from the Site. This reference wetland area is a mature Piedmont Bottomland Forest that is located within the floodplain of Howards Creek in Lincoln County. Historical aerials reveal no recent disturbances to the reference property and no disturbances were observed in the field. The existing vegetation communities are typical of a Bottomland Hardwood Forest and include mature canopy tree species, moderate subcanopy and shrub species, as well as an herbaceous layer. Dominant canopy species include river birch, green ash, sycamore, box elder, and red maple. Understory species include ironwood and spicebush. The herbaceous layer within the reference wetland included arrow arum, jewelweed, lizard's tail, and microstegium.

The hydrology of this system is intermittently, temporarily, or seasonally flooded, but unlike the project site, the reference area has not been disturbed by clearing or ditching. As a result, mature vegetation has been established and the natural flooding regime has been preserved. This reference wetland has been used by Wildlands for previous mitigation sites and groundwater data has been collected for the last four growing season, providing a good baseline of hydrologic data for comparison during

monitoring. The proximity of the reference area to the project site provides quality hydrologic information to use in rehabilitating and re-establishing wetlands at the proposed site.

Groundwater monitoring data from the reference well for the 2019 growing season is included in Appendix 7 and is also shown on the existing groundwater gage plots installed at the Site for hydrologic comparison. During the recorded period, general trends of reference Site hydrology (peak and drawdown periods) are very similar in duration and magnitude to gages installed at the Site within the proposed wetland areas. This data supports that the reference site sees similar climatic conditions as the proposed mitigation site. It can also be observed that drawdown periods (receding limbs of the groundwater hydrographs) for the proposed mitigation site are steeper than those at the reference site, indicating that a lack of surface roughness from vegetation and increased drainage effects form agricultural ditching are influencing Site hydrology. Groundwater gage 5 located within the previous cutover area which currently contains more established vegetation most nearly matches the reference well data, supporting that establishing herbaceous and woody vegetation will slow drainage effects. While currently meeting wetland hydrologic criteria, groundwater gage 5 is still seeing some drainage effects from existing agricultural swales, and is anticipated that the groundwater levels will increase further once these drainage features are filled during construction, increasing groundwater levels even closer to those observed at the reference wetland site. These hydrology data support that the reference site has the appropriate hydrologic regime to serve as a reference condition for the project site. The reference gage will continue to record water table depth throughout the post-construction monitoring period. In the event of unusual weather during the post-construction monitoring period, the reference well performance will be used as a check for the mitigation site performance.

7.8 Vegetation and Planting Plan

The objective of the planting plan is to establish, over time, a 50-foot thriving riparian buffer composed of native tree species. This restored buffer will improve riparian and wetland habitat, help the restored streams stay stable, shade the streams, and provide a source for LWD and organic material to the streams. The specific species composition to be planted was selected based on the target community type, observation of occurrence of species in riparian buffers adjacent to the site, availability of nursery stock, and best professional judgment. Species chosen for the planting plan are listed on sheet 4.0 of the preliminary plans located in Appendix 12. Wildlands used the following community types as targets for species selection for the site:

Piedmont/Low Mountain Alluvial Forest

Canopy trees include but not limited to *Betula nigra, Platanus occidentalis, Liquidambar* styraciflua, Liriodendron tulipifera, Ulmus americana, Celtis laevigata, Juglans nigra, Fraxinus pennsylvanica, Carya cordiformis, Carya ovata, Quercus imbricaria, and Acer rubrum. Subcanopy trees typically found in mesic mixed hardwood forest include Acer negundo, Acer floridanum, Acer rubrum, Asimina triloba, Ilex opaca, and Carpinus caroliniana.

Mesic Mixed Hardwood Forest

Canopy trees include nut not limited to Fagus grandifolia, Quercus rubra, Liridondron tulipifera, Acer rubrum, Acer saccharum, Tsuga canadensis. Subcanopy trees in mixed hardwood forest include Cornus florida, Ostrya virginianan, Evonymus americana, Kalmia latifolia.

Piedmont Bottomland Forest

Canopy trees include but not limited to *Liriodendron tulipifera, Liquidambar styraciflua, Quercus pagoda, Quercus michauxii, Ulmus american, Celtis laevigata, Fraxinus pennsylvanica, Pinus taeda, Carya Ovata, and Craya cordiformus.* Subcanopy trees typically found in bottomland

forest include Carpinus carolinianan, Acer floridanum, Acer rubrum, Cornus florida, Ilex opaca, and Asiminia triloba.

Non-forested areas within the conservation easement will be planted with bare root tree species and permanent riparian seed mix. Riparian buffers will be seeded and planted with native vegetation chosen to develop species diversity and are listed on Sheet 4.0 of the preliminary design plans located in Appendix 8. The specific species composition to be planted was selected based on the community type, observation of occurrence of species in riparian buffers adjacent to the Site, and best professional judgement on species establishment and anticipated Site conditions in the early years following project implementation. In addition, the stream banks will be planted with live stakes and the channel toe will be planted with herbaceous plugs. Permanent herbaceous seed will be spread on streambanks, floodplain areas, and disturbed areas within the project easement. Per the 2016 NCIRT Mitigation Guidance plantings are preferred to occur between November 15 and March 15, however, in some cases the March 15 deadline cannot be met but planting must occur no later than April 15 for acceptance as a full season of monitoring. Per IRT Guidance, vegetation monitoring also cannot be started within 180 days of the completion of planting.

Mechanical site soil preparation will be implemented where necessary, including but not limited to wetland areas, priority 2 benches, and areas of cut greater than one foot. Site preparations will be performed to create soil physical properties favorable for tree growth. In the pasture areas, the planted area will be ripped in a grid-like pattern with a maximum rip shank spacing of six feet. Ripping will be performed during the driest conditions feasible to maximize shatter of the plow pan. Ripping may be implemented to reduce soil compaction resulting from existing farm paths, haul roads, stockpile areas, etc. Where required based on site conditions, topsoil will be stockpiled and reapplied. Soil amendments may be incorporated to augment survival and growth of planted vegetation as determined necessary by soil testing.

Invasive species within the riparian buffers of restoration reaches will be treated at the time of construction. The extent of invasive species coverage will be monitored, mapped, and controlled as necessary throughout the required monitoring period. Please refer to Appendix 9 for the invasive species treatment plan.

7.9 Project Risk and Uncertainties

In general, this project has low risk. Due to the rural nature of the watershed and the Site's location in the upper reaches of the watershed, there is very little risk that changes in land use upstream in the project watershed would alter the hydrology or sediment supply enough to damage the project streams after construction.

One easement crossing will be part of the Site: a new internal culvert crossing on Carpenter Branch Reach 1. Stone will be placed along the entrance and exit of the Carpenter Branch culvert to dissipate energy and provide stability.

8.0 Performance Standards

The performance criteria for the Site will follow approved performance criteria presented in the DMS Stream and Wetland Mitigation Plan Template and Guidance (June 2017), and the October 2016 IRT Mitigation Monitoring Guidance. Annual monitoring and semi-annual site visits will be conducted to assess the condition of the completed project. The stream restoration sections of the project will be assigned specific performance criteria components for stream morphology, hydrology, vegetation, and wetland hydrology. Performance criteria will be evaluated throughout the seven years of post-construction monitoring period.

8.1 Streams

8.1.1 Dimension

Riffle cross sections on the restoration reaches should be stable and should show little change in bankfull area, and width-to-depth ratio. Per NC IRT guidance, bank height ratios shall not exceed 1.2 and entrenchment ratios must be no less than 2.2 at any measured riffle cross section. Riffle cross sections should fall within the parameters defined for channels of the appropriate stream type. If any changes do occur, these changes will be evaluated to assess whether the stream channel is showing signs of instability. Indicators of instability include a vertically incising thalweg or eroding channel banks. Changes in the channel that indicate a movement toward stability or enhanced habitat include a decrease in the width-to-depth ratio in meandering channels or an increase in pool depth. Remedial action would not be taken if channel changes indicate a movement toward stability.

8.1.2 Pattern and Profile

Visual assessments and photo documentation should indicate that streams are remaining stable and do not indicate a trend toward vertical or lateral instability. Signs of instability may include bank scour, bank migration, and bed incision.

8.1.3 Hydrology

Four bankfull flow events, occurring in separate years, must be documented on the restoration reaches within the seven-year monitoring period.

Bankfull events will be documented using photographs and either a crest gage or a pressure transducer, as appropriate for Site conditions. The selected measurement device will be installed within a surveyed riffle cross section. The device will be checked at each site visit to determine if a bankfull event has occurred. Photographs will also be used to document the occurrence of debris lines and sediment deposition. A pressure transducer will be installed in the channel to document baseflow within streams channels. The pressure transducer data will be plotted and included in the annual monitoring reports. Per the NCIRT request via meeting minutes included in the appendix, stream gages are proposed along UT1, UT2, and UT3 to document continuity of flow along these reaches.

8.1.4 Photo Documentation

Photographs should illustrate the Site's vegetation and morphological stability on an annual basis. Cross section photos should demonstrate no excessive erosion or degradation of the banks. Longitudinal photos should indicate the absence of persistent bars within the channel or vertical incision. Grade control structures should remain stable. Deposition of sediment on the bank side of vane arms is preferable. Maintenance of scour pools on the channel side of vane arms is expected.

Photographs will be taken once a year to visually document stability for seven years following construction. Permanent markers will be established and located with GPS equipment so that the same locations and view directions on the Site are photographed each year. Photos will be used to monitor restoration and enhancement areas as well as vegetation plots.

Longitudinal reference photos will be established along the channel by taking a photo looking upstream and downstream. Cross sectional photos will be taken of each permanent cross section looking upstream and downstream. Reference photos will also be taken for each of the vegetation plots. Representative digital photos of each permanent photo point, cross section, and vegetation plot will be taken on the same day the stream and vegetation assessments are conducted. The photographer will make every effort to consistently maintain the same area in each photo over time.

8.2 Vegetation

Vegetative performance for riparian buffers associated with the stream restoration component of the project (buffer widths 0 – 50ft) will be in accordance with the Stream Mitigation Guidelines issued October 2016 by the USACE and NCIRT. The success criteria is an interim survival rate of 320 planted stems per acre at the end of monitoring year three (MY3), 260 stems per acre at the end of monitoring year 5 (MY5) and a final vegetation survival rate of 210 stems per acre at the end of monitoring year 7 (MY7). Planted vegetation must average 7 feet in height in each plot at the end of the fifth monitoring year (MY5) and 10 feet in height in each plot at the end of the seventh year (MY7) of monitoring. Given inundation periods anticipated for areas proposed for wetland restoration, woody vegetation growth may be hindered resulting in stunted tree heights. If monitored vegetation data does not meet the required vigor outlined above, tree height and vigor will be evaluated and discussed within monitoring reports and adaptive management plans, as necessary. Vegetation monitoring will be conducted between July 1st and the end of the of the growing season and no later than November 1st. The extent of invasive species coverage will be monitored and controlled as necessary throughout the required monitoring period (MY7).

A combination of permanent and random vegetation plots will be used to demonstrate vegetation coverage. Both fixed and mobile plots will be chosen randomly and will include a mix of the planted vegetation communities. All woody stems, including exotic invasive species, are to be counted within each plot. The vegetation plots permanent and mobile will be distributed through each planted area as follows: four plots in wetland re-establishment areas, three plots in wetland rehabilitation zones, and six plots in riparian planting areas.

Permanent vegetation plots will be established after construction during the as-built baseline (MYO). Permanent plots will be visually marked in the field and planted woody stems within these plots will be marked annually as needed and given a coordinate, based off a known origin, so that they can be found in subsequent monitoring years. Individual plot data will include height, density, vigor, damage (if any), planted species versus volunteer species, and survival. Mortality will be determined from the difference between the previous year's living planted stems and the current year's living planted stems.

Mobile vegetation plots will not make up more than 50% of the total required plots. Locations (GPS coordinates and orientation) of the random plots will be identified and included in the corresponding monitoring year's report. Plots will be physically marked in the field so that they may be evaluated during the monitoring year. Random plot data collected will include species and height.

8.3 Wetland

Groundwater monitoring gages will be established throughout the proposed wetland area as shown in Figure 10. Generally, the gages will be installed at appropriate locations so that the data collected will provide an indication of groundwater levels throughout the wetland project area. As outlined above in Section 7.7.3, Table 1 listing wetland saturation thresholds provided in the Notification of Issuance of *Guidance for Compensatory Stream and Wetland Mitigation Conducted for the Wilmington District* (October 24, 2016) defines a wetland saturation threshold for Worhsam soils between 10% and 12% and the defined growing season based on the Gaston County, North Carolina WETS table for 50% probability of soil temperatures greater than 28 degrees Fahrenheit is March 15th to November 14th representing a 250-day growing season. Based on the information above, along with the existing hydrologic Site investigation and reference wetland data, Wildlands proposes a saturation criterion of 12% of the 250-day growing season, representing 30 consecutive days of inundation.

Growing season dates for the project area will be confirmed using soil temperature probes installed onsite and soil temperature data will be collected for each individual monitoring year. Per USACE guidance, soil temperature probes will be located at a depth of 12 inches. The growing season will be defined as

that portion of the year where soil temperature remains above 40 degrees Fahrenheit and can be corroborated with vegetative indicators, including bud burst and leaf drop. The growing season may not begin before March 1 of each year when calculating hydroperiods. If a wetland zone does not meet the performance standard for a given monitoring year, rainfall patterns will be analyzed, and the hydrograph will be compared to that of the reference wetland to assess whether atypical weather conditions occurred during the monitoring period. Soil profile descriptions will be recorded at each boring where a gage is installed before and after construction. The profile descriptions will present a record of the soil horizons, color, texture, and redoximorphic features.

8.4 Visual Assessments

Visual assessments should support the specific performance standards for each metric as described above. Visual assessments will be performed along stream reaches on a semi-annual basis during the seven-year monitoring period. Problem areas will be noted such as channel instability (e.g. lateral and/or vertical instability, instream structure failure/instability and/or piping, headcuts), vegetation health (e.g. low stem density, vegetation mortality, invasive species, or encroachment), beaver activity, or livestock access. Areas of concern will be mapped and photographed and will be accompanied by a written description in the annual report. Problem areas will be re-evaluated during each subsequent visual assessment. Should remedial actions be required, a plan of action will be provided in the annual monitoring report.

8.5 Benthic Macroinvertebrates and Water Quality Monitoring

Based on the issued and approved NCIRT meeting minutes from January 16, 2019 included in Appendix 13, the Site is a good candidate for benthic and water quality monitoring with a potential associated 2% to 4% credit bonus associated with this monitoring. If based on review of the draft mitigation plan, NCDMS and the NCIRT are still in support of this monitoring and associated credit bonus, Wildlands will draft a technical memorandum outlining water quality and benthic macroinvertebrate sampling techniques which will be included with the comment response letter submitted with the Final Mitigation Plan and associated crediting bonuses will be based on quantities presented in Table 20.

9.0 Monitoring Plan

The Site monitoring plan has been developed to ensure that the required performance standards are met and project goals and objectives are achieved. Annual monitoring data will be reported using the DMS Baseline Monitoring Report Template (April 2017). The monitoring report shall provide project data chronology that will facilitate an understanding of project status and trends, ease population of DMS databases for analysis and research purposes and assist in close-out decision making.

Using the DMS Baseline Monitoring Report Template (June 2017), a baseline monitoring document and as-built record drawings of the project will be developed for the constructed Site. Complete monitoring reports will be prepared in the fall of monitoring year one, two, three, five, and seven and submitted to DMS. In monitoring years four, and six, a summary of the site conditions along with photos, current condition plan view (CCPV) map, and applicable hydrology data will be prepared and submitted to DMS. Annual monitoring reports will be based on the DMS Annual Monitoring Report Template (June 2017). The monitoring period will extend seven years beyond completion of construction or until performance criteria have been met. Table 17, below, describes how the monitoring plan is set up to verify that project goals and objectives have been achieved.

9.1 Monitoring Components

Project monitoring components are listed in more detail in Table 18. Approximate locations of the proposed vegetation plots and groundwater gage monitoring components are illustrated in Figure 10.

Goal	Objective	Performance Standards	Monitoring Metric
Exclude livestock from stream channels and wetlands.	Decommission livestock pastures from parcels and remove livestock from stream channels, wetlands, and riparian areas.	Prevent easement encroachment	Visual assessment for signs of livestock encroachment.
Improve stability of stream channels.	Reconstruct stream channels with stable dimension, pattern, and profile. Reconnect streams to existing floodplain. Add bank revetments and in-stream structures to protect restored streams.	Bank height ratios stay below 1.2. Visual assessments showing progression towards stability.	Cross-section monitoring and Visual assessment.
Improve instream habitat.	Install habitat features such as constructed steps, constructed riffles, and brush toe on restored reaches. Add woody materials to channel beds. Construct pools of varying depth.	There is no required performance standard for this metric.	Visual assessment
Restore wetland function and hydrology.	Restore wetlands through re-establishment of hydrology. Remove the drainage effects of agricultural ditching and maintenance.	Free groundwater surface within 12 inches of the ground surface for a minimum of 12% (30 consecutive days) of the growing season for Gaston County.	Groundwater gages will be placed in wetland restoration areas and monitored annually.
Restore and enhance native floodplain and wetland vegetation.	Plant native tree, shrub and understory species in riparian and proposed wetland restoration zones.	In open areas planted; Survival of 210 planted stems per acre at MY7. Interim survival of at least 320 planted stems at MY3 and at least 260 planted stems per acre at MY5. No success criteria are associated with shaded area planting. Planted vegetation must average 7 feet in height in each plot at the end of MY5 and 10 feet in height in each plot at the end of MY7.	Permanent and mobile 100 square meter vegetation plots within planted open areas. Shaded areas planted will be visual assessed.
Permanently protect the project site from harmful uses.	Establish a conservation easement on the Site.	Record and close conservation easement prior to implementation.	Visual assessment

			Qu	uantity/Ler	ngth by Reach	n			
Parameter	Monitoring Feature	Carpenter Branch Reach 1	Carpenter Branch Reach 2	UT1	UT2	UT3	UT4	Frequency	Notes
Dimension	Riffle Cross-sections	6	N/A	1	N/A	1	N/A	Voor122E and 7	1
Dimension	Pool Cross-sections	6	N/A	N/A	N/A	N/A	N/A	Year 1, 2, 3, 5, and 7	1
Pattern	Pattern	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ſ
Profile	Longitudinal Profile	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2
Substrate	Reach wide (RW) Pebble Count	1	N/A	1	1	1	1	Year 1, 2, 3, 5, and 7	3
Hydrology	Crest Gage (CG) and/or Transducer (SG)	1 SG	N/A	1 SG	1 SG	1 SG		Semi-Annual	4
Vegetation	CVS Level 2/Mobile Plots		13 (9 permanent, 4 mobile)		Year 1, 2, 3, 5, and 7	5			
Wetland	Groundwater Gage			1	1			Semi-Annual	
Visual Assessment		Y	Y	Y	Y	Y	Y	Semi-Annual	
Exotic and nuisance vegetation								Semi-Annual	6
roject Boundary								Semi-Annual	7
eference Photos	Photographs	5	3	1	1	1	1	Annual	

Table 18: Monitoring Components – Carpenter Bottom Mitigation Site

1. Cross-sections will be permanently marked with rebar to establish location. Surveys will include points measured at all breaks in slope, including top of bank, bankfull, edge of water, and thalweg.

2. Pattern and profile will be assessed visually during semi-annual site visits. Longitudinal profile will be collected during as-built baseline monitoring survey only, unless observations indicate widespread lack of vertical stability (greater than 10% of reach is affected) and profile survey is warranted in additional years to monitor adjustments or survey repair work.

- 3. Riffle 100-count substrate sampling will be collected during the baseline monitoring only. Substrate assessments in subsequent monitoring years will consist of reachwide substrate monitoring.
- 4. Crest gages and/or transducers will be inspected quarterly or semi-annually, evidence of bankfull events will be documented with a photo when possible. Transducers, if used, will be set to record stage once every 2 hours. The transducer will be inspected and downloaded semi-annually. A transducer will be installed on the intermittent portion of Carpenter Branch Reach 1, UT1, and UT3 to document 30 days of continuous flow.
- 5. Both mobile and permanent vegetation plots will be utilized to evaluate the vegetation performance for the open areas planted. 2% of the open planted acreage will be monitored with permanent plots and mobile plots. Permanent vegetation monitoring plot assessments will follow CVS Level 2 protocols. Mobile vegetation monitoring plot assessments will document number of planted stems and species using a circular or 100 m² square/rectangular plot. Planted shaded areas will be visually assessed. Number indicates total number of plots for the entire site.
- 6. Locations of exotic and nuisance vegetation will be mapped.
- 7. Locations of vegetation damage and boundary encroachments will be mapped.

10.0 Long-Term Management Plan

The Site will be transferred to the North Carolina Department of Environmental Quality (NCDEQ) Stewardship Program. This party shall serve as conservation easement holder and long-term steward for the property and will conduct periodic inspection of the site to ensure that restrictions required in the conservation easement are upheld. The NCDEQ Stewardship Program is developing an endowment system within the non-reverting, interest-bearing Conservation Lands Conservation Fund Account. The use of funds from the Endowment Account will be governed by North Carolina General Statue GS 113A-232(d)(3). Interest gained by the endowment fund may be used for stewardship, monitoring, stewardship administration, and land transaction costs, if applicable.

The Stewardship Program will periodically install signage as needed to identify boundary markings as needed. No livestock or fencing are currently present or planned for the project area. Any future livestock or associated fencing or permanent crossings will be the responsibility the owner of the underlying fee to maintain.

The Site Protection Instrument can be found in Appendix 1.

Long-Term Management Activity	Long-Term Manager Responsibility	Landowner Responsibility
Signage will be installed and maintained along the Site boundary to denote the area protected by the recorded conservation easement.	The long-term steward will be responsible for inspecting the Site boundary and for maintaining or replacing signage to ensure that the conservation easement area is clearly marked.	The landowner shall report damaged or missing signs to the long-term manager, as well as contact the long-term manager if a boundary needs to be marked, or clarification is needed regarding a boundary location. If land use changes in the future and fencing is required to protect the easement, the landowner is responsible for installing appropriate approved fencing.
The Site will be protected in its entirety and managed under the terms outlined in the recorded conservation easement.	The long-term manager will be responsible for conducting annual inspections and for undertaking actions that are reasonably calculated to swiftly correct the conditions constituting a breach. The USACE, and their authorized agents, shall have the right to enter and inspect the Site and to take actions necessary to verify compliance with the conservation easement.	The landowner shall contact the long-term manager if clarification is needed regarding the restrictions associated with the recorded conservation easement.

Table 19: Long-term Management Plan – Carpenter Bottom Mitigation Site

11.0 Adaptive Management Plan

Upon completion of Site construction, Wildlands will implement the post-construction monitoring defined in Sections 8 and 9. Project maintenance will be performed during the monitoring years to address minor issues as necessary (Appendix 10). If, during the course of annual monitoring it is determined the Site's ability to achieve Site performance standards are jeopardized, Wildlands will

notify the DMS of the need to develop a Plan of Corrective Action. Once the Plan of Corrective Action is prepared and finalized Wildlands will:

- Notify the USACE as required by the Nationwide 27 permit general conditions;
- Revise performance standards, maintenance requirements, and monitoring requirements as necessary and/or required by the USACE;
- Obtain other permits as necessary;
- Implement the Corrective Action Plan; and
- Provide the USACE a Record Drawing of Corrective Actions. This document shall depict the extent and nature of the work performed.

12.0 Determination of Credits

The final stream credits associated with the Site are listed in Table 20. Stream restoration is proposed at a credit ratio of 1:1 and stream enhancement III is proposed at a credit ratio of 8:1 based on cattle exclusion, establishment of a conservation easement, and removal of invasive species. Wetland reestablishment and rehabilitation are proposed at a ratio of 1:1 and 1.5:1, respectively. Crediting ratios are based on discussions with the IRT as included within post contract meeting minutes included in Appendix 13 along with current mitigation standards. The credit release schedule is located in Appendix 11.

The riparian buffers along Carpenter Branch Reach 2 between station 126+53 to 127+77 do not meet the required 50 foot minimum based on property limitations along the left bank. This portion of Carpenter Reach 2 will be within the conservation easement and treated as part of the project however, based on the limited buffer, no credit is proposed for this portion of the reach. Given that greater than 95% of the proposed credited stream length does have the required 50-foot minimum buffer, no credit reduction was performed.

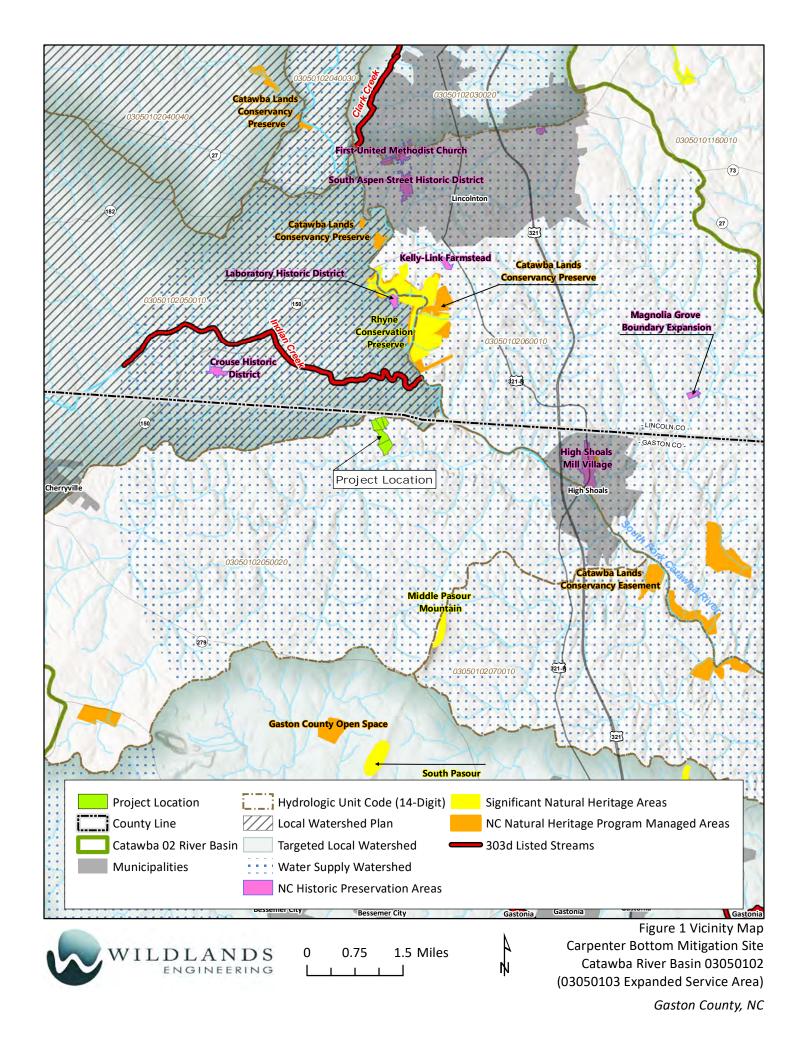
Project Segment	Existing Footage or Acreage	Mitigation Plan Footage or Acreage	Mitigation Category	Restoration Level	Priority Level	Mitigation Ratio (X:1)	Mitigation Credits
Carpenter Branch Reach 1	2,564	2,249.689	Cool	R	P1, P2	1.0	2249.689
Carpenter Branch Reach 2	2,304	353.080ª	Cool	EIII		8.0	44.135
UT1	123	174.819	Cool	R	P1, P2	1.0	174.819
UT2	245	178.196	Cool	R	P1	1.0	178.196
UT3	387	384.661	Cool	R	P1	1.0	384.661
UT4	50	36.349	Cool	R	P1	1.0	36.349
Wetland Re- Establishment	0.000	5.714	RR	RE		1.00000	5.714
Wetland Rehabilitation	4.130	3.947	RR	RH		1.50000	2.631

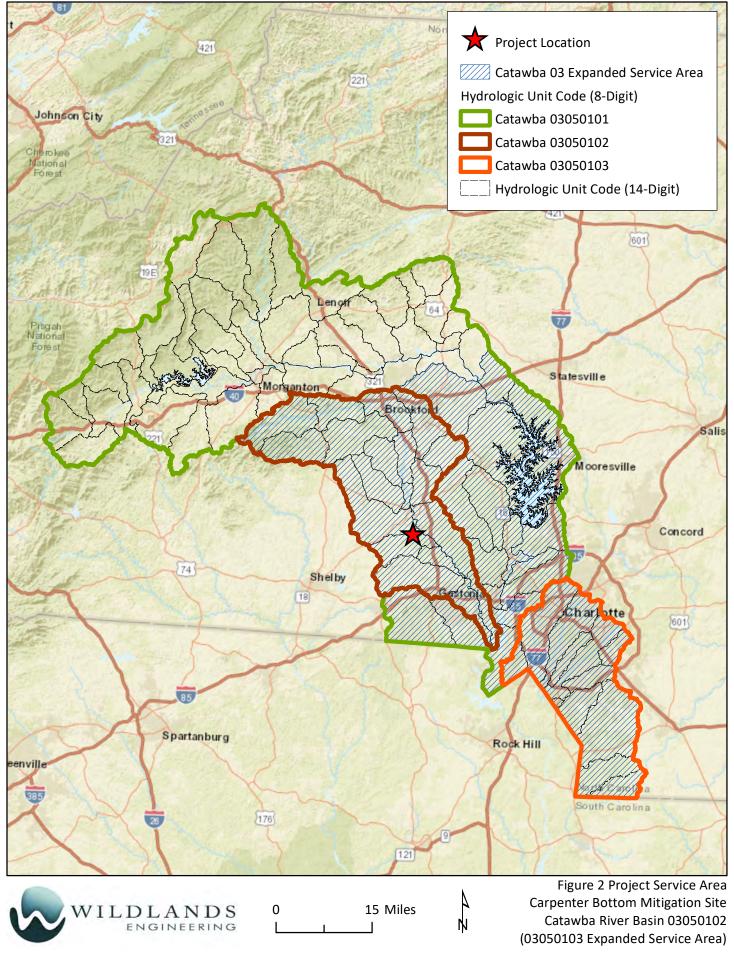
Table 20: Project Asset Table – Carpenter Bottom Mitigation Site

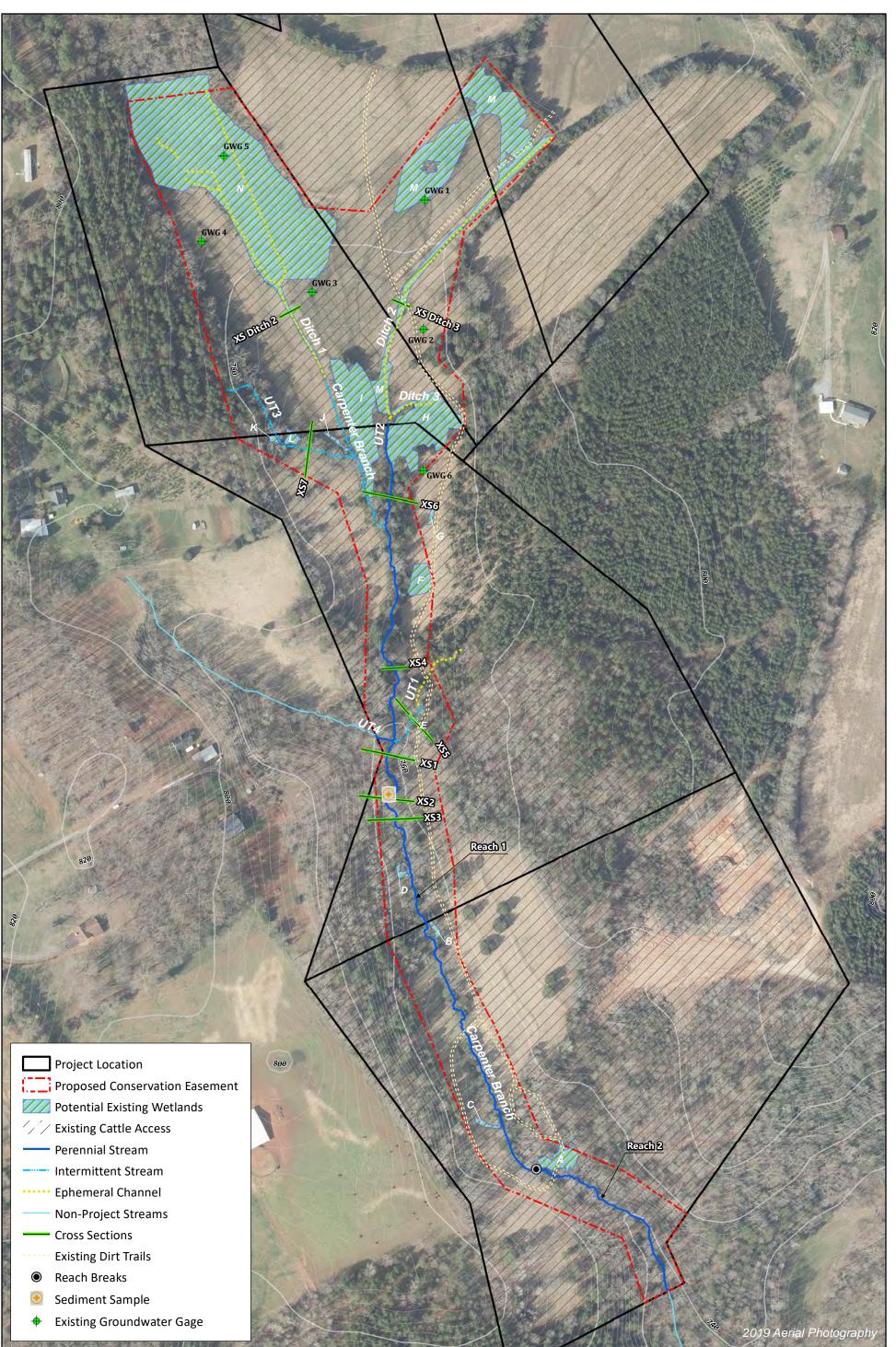
	Stream		Riparian Wetland		Non-Rip	Coastal	
Restoration Level	Warm	Cool	Cold	Riverine	Non-Riv	Wetland	Marsh
Restoration		3023.714					
Re-establishment				5.714			
Rehabilitation				2.631			
Enhancement							
Enhancement I							
Enhancement II							
Enhancement III		44.135					
Creation							
Preservation							
Total Crediting		3,067.849		8.345			

13.0 References

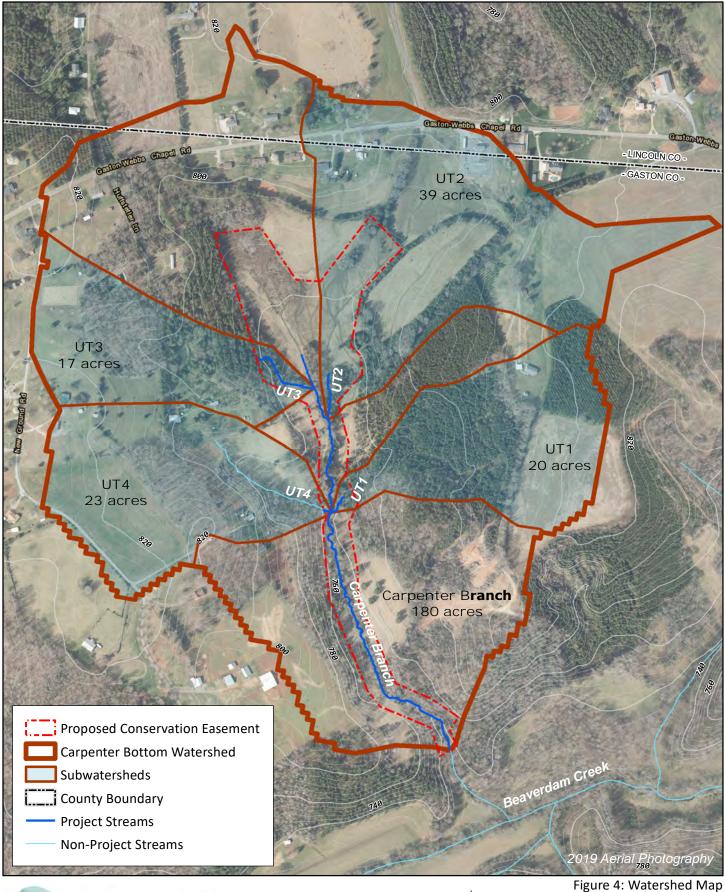
- Dunne, T. and L. B. Leopold. 1978. Water in Environmental Planning. W.H. Freeman and Company. New York.
- Gaston County Planning & Development Services. 2016. *Gaston County 2035 Comprehensive Land Use Plan*. Gaston County, NC
- Giese, G.I and Robert R. Mason Jr. 1993. Low-Flow Characteristics of Streams in North Carolina. U.S. Geological Survey Water Supply Paper 2403.
- Harman, W.A. and C.J. Jones. 2016. Functional Lift Quantification Tool for Stream Restoration Projects in North Carolina: Spreadsheet User Manual Version 2. Environmental Defense Fund, Raleigh, NC.
- Harman, W. R. Starr, M. Carter, K. Tweedy, M. Clemmons, K. Suggs, C. Miller. 2012. A Function Based Framework for Stream Assessment and Restoration Projects. US Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds, Washington, DC EPA 843-K-12-006.
- Harman et al. 1999. Bankfull Hydraulic Geometry Relationships for North Carolina Streams. AWRA Wildland Hydrology Symposium Proceedings. Edited by: D. S. Olsen and J.P. Potyondy. AWRA Summer Symposium. Bozeman, MT.
- Hosking, J. R. M., and J. R. Wallis. 1993. Some statistics useful in regional frequency analysis, Water Resour. Res., 29(2), 271–281, doi:10.1029/92WR01980.
- Montgomery County Department of Environmental Protection Division of Water Resources Management. 1996. *Rapid Stream Assessment Technique (RSAT) Field Methods.* Montgomery County, Maryland.
- Natural Resources Conservation Service (NRCS). Web Soil Survey of Gaston County. <u>http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm</u>
- North Carolina Division of Mitigation Services. 2007. Catawba River Basin Restoration Priorities
- North Carolina Division of Water Quality (NCDWQ), 2011. Surface Water Classifications. http://deq.nc.gov/about/divisions/water-resources/planning/classification-standards/classifications
- North Carolina Geological Survey (NCGS), 1985, Geologic Map of North Carolina: Raleigh, North Carolina Department of Natural Resources and Community Development, Geological Survey Section, scale 1:500,00, in color.
- NCGS, 2017. NCGS Publications. https://deq.nc.gov/about/divisions/energy-mineral-land-resources/north-carolina-geological-survey/interactive-geologic-maps
- NCGS, 2013. Mineral Resources. <u>http://deq.nc.gov/about/divisions/energy-mineral-land-resources/north-carolina-geological-survey/mineral-resources</u>
- North Carolina Natural Heritage Program (NHP), 2009. Natural Heritage Element Occurrence Database, Gaston County, NC.
- Rosgen, D. L. 1994. A classification of natural rivers. Catena 22:169-199.
- Rosgen, D.L. 2001. A stream channel stability assessment methodology. Proceedings of the Federal Interagency Sediment Conference, Reno, NV, March 2001.
- Schafale, M.P. 2012. Classification of the Natural Communities of North Carolina, Fourth Approximation. North Carolina Natural Heritage Program, Raleigh, North Carolina.
- Schafale, M.P., Weakley, A.S. 1990. Classification of The Natural Communities of North Carolina, Third Approximation. North Carolina Natural Heritage Program, Raleigh, North Carolina.




- Simon, A. 1989. A model of channel response in disturbed alluvial channels. Earth Surface Processes and Landforms 14(1):11-26.
- Shields, D. F., Copeland, R. R, Klingman, P. C., Doyle, M. W., and Simon, A. 2003. Design for Stream Restoration. Journal of Hydraulic Engineering 129(8): 575-582.
- United States Army Corps of Engineers (USACE). 2016. Federal Public Notice: Notification of Issuance of Guidance for Compensatory Stream and Wetland Mitigation Conducted for Wilmington District. October 24, 2016.
- United States Fish and Wildlife Service (USFWS), 2014. Endangered Species, Threatened Species, Federal Species of Concern and Candidate Species, Gaston County, NC. http://www.fws.gov/raleigh/species/cntylist/Gaston.html


Walker, Alan, unpublished. NC Rural Mountain and Piedmont Regional Curve.

FIGURES

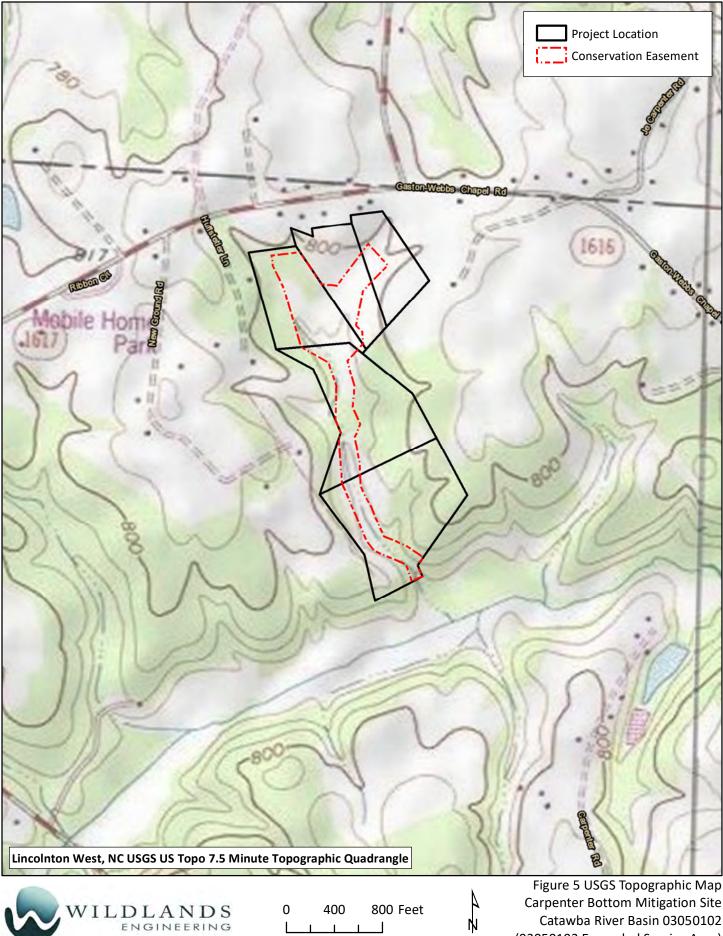


WILDLANDS

0	100	200 Feet

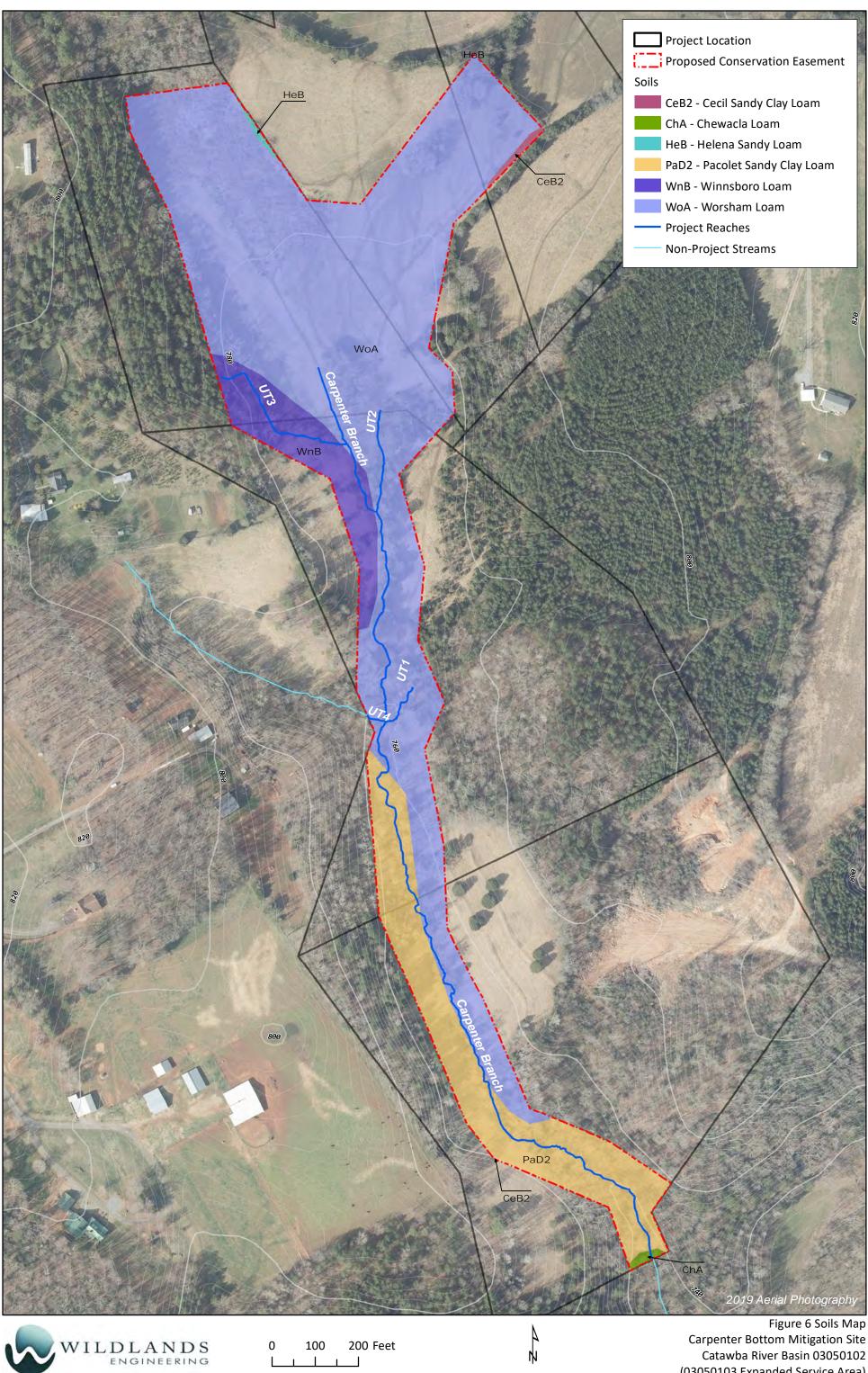
Ŵ

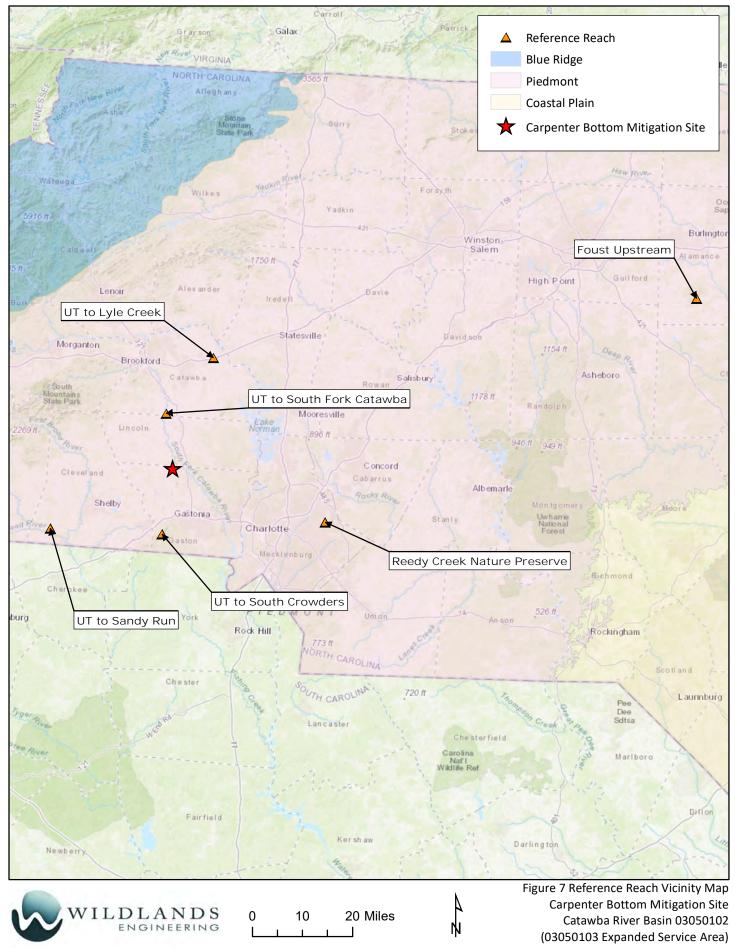
Figure 3 Site Map Carpenter Bottom Mitigation Site Catawba River Basin 03050102 (03050103 Expanded Service Area)

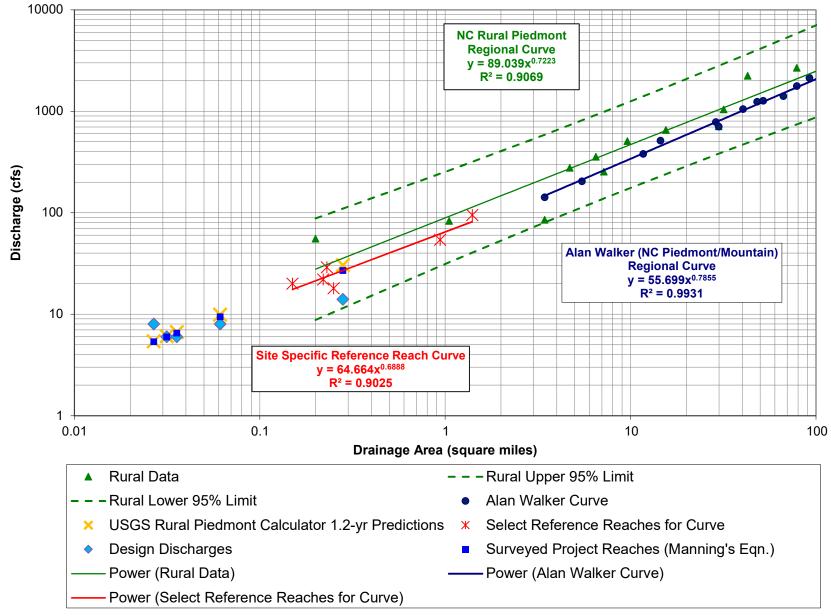


0 250 500 Feet

4

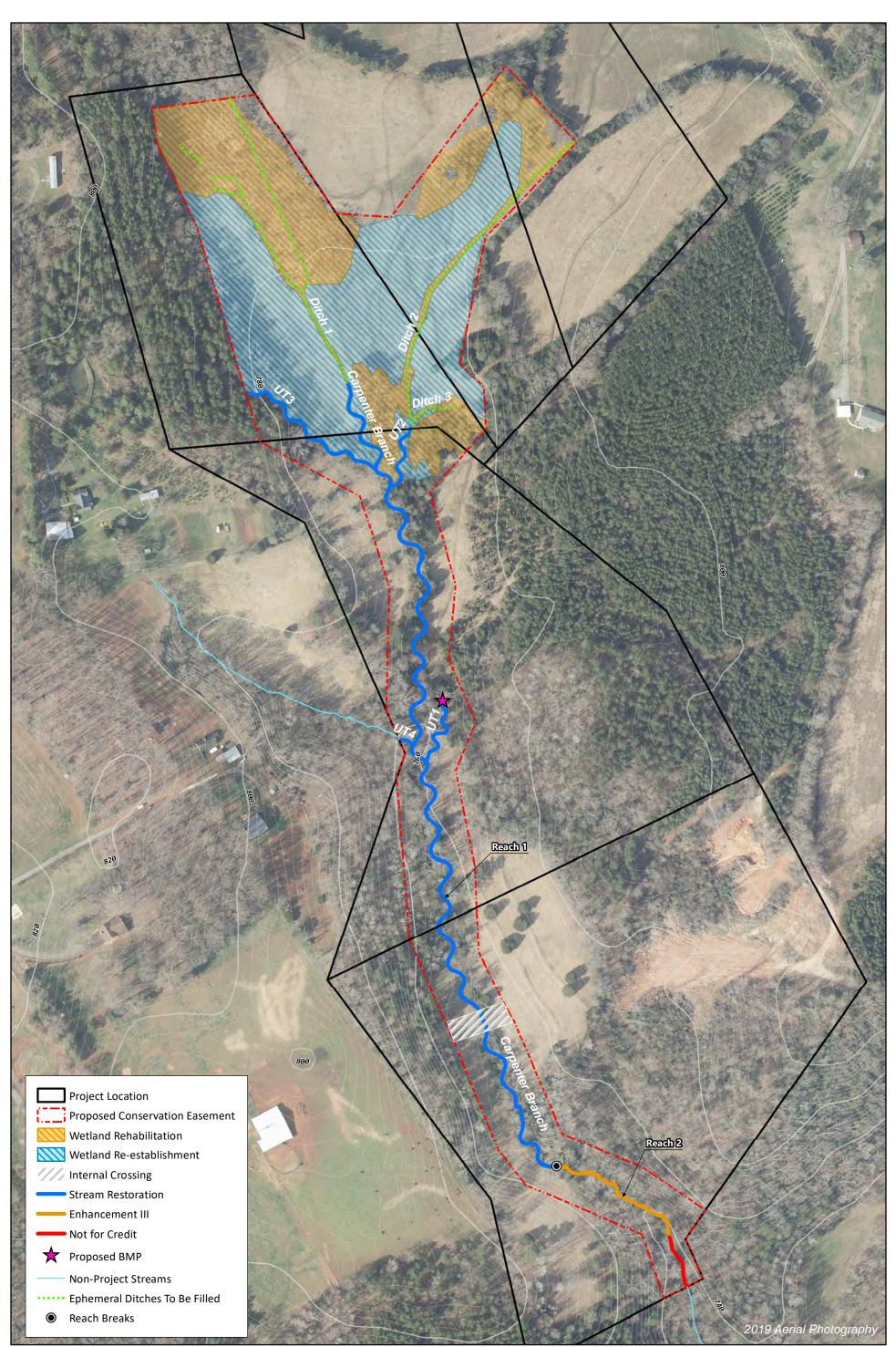

Figure 4: Watershed Map Carpenter Bottom Mitigation Site Catawba River Basin 03050102 (03050103 Expanded Service Area)




800 Feet 0 400 L 1 1 1

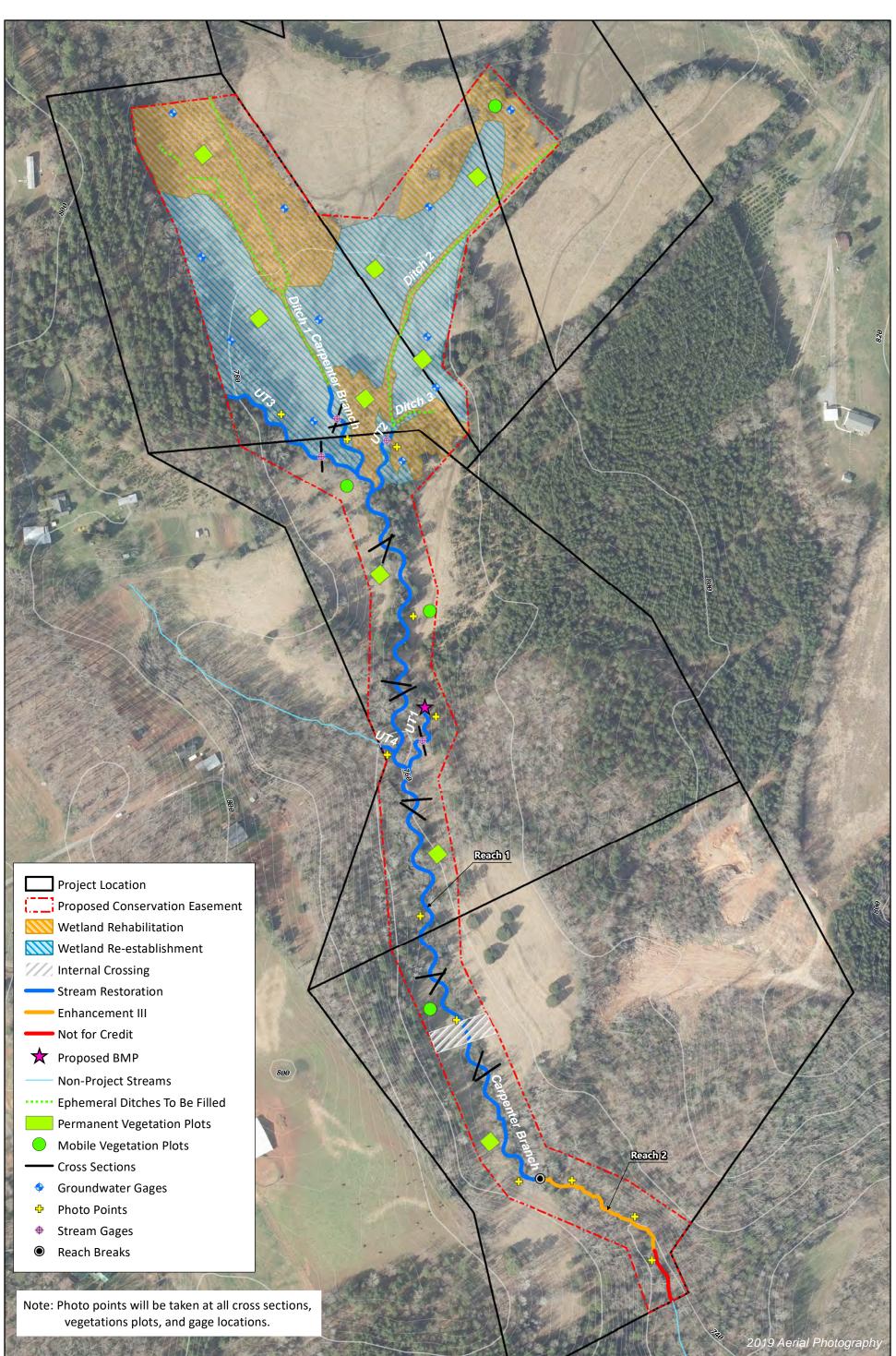
Carpenter Bottom Mitigation Site Catawba River Basin 03050102 (03050103 Expanded Service Area)

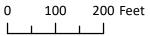
Carpenter Bottom Mitigation Site Catawba River Basin 03050102 (03050103 Expanded Service Area)



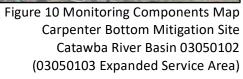
NC Rural Piedmont and Alan Walker (Rural Piedmont/Mountain) Regional Curves: Bankfull Discharge Plot

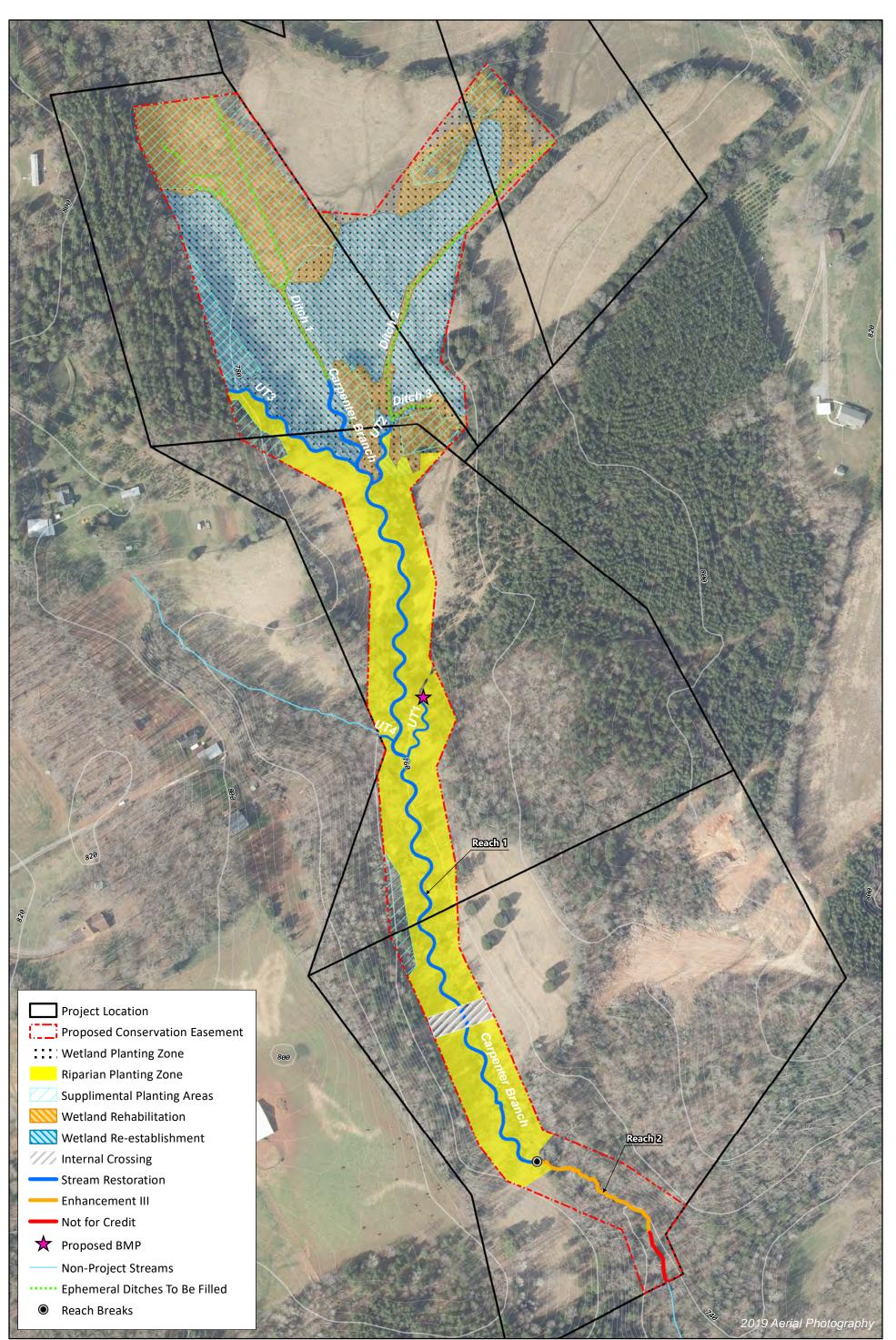
Figure 8 Discharge Analysis Carpenter Bottom Mitigation Site Catawba River Basin 03050102 (03050103 Expanded Service Area)




0 100 200 Feet

Ŵ


Figure 9 Concept Map Carpenter Bottom Mitigation Site Catawba River Basin 03050102 (03050103 Expanded Service Area)



Ń

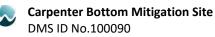
WILDLANDS

0 100 200 Feet

Ń

Figure 11 Proposed Planting Zone Map Carpenter Bottom Mitigation Site Catawba River Basin 03050102 (03050103 Expanded Service Area)

APPENDIX 1 Site Protection Instrument


Appendix 1 Site Protection Instrument

The land required for construction, management, and stewardship of this mitigation project includes portions of the parcels listed in Table 1. Parcels are optioned for easement purchase by Wildlands Engineering, Inc. (Wildlands). Upon transfer of lands to Wildlands, a conservation easement will be recorded on the parcels and includes streams and wetlands being restored and preserved along with their corresponding riparian buffers.

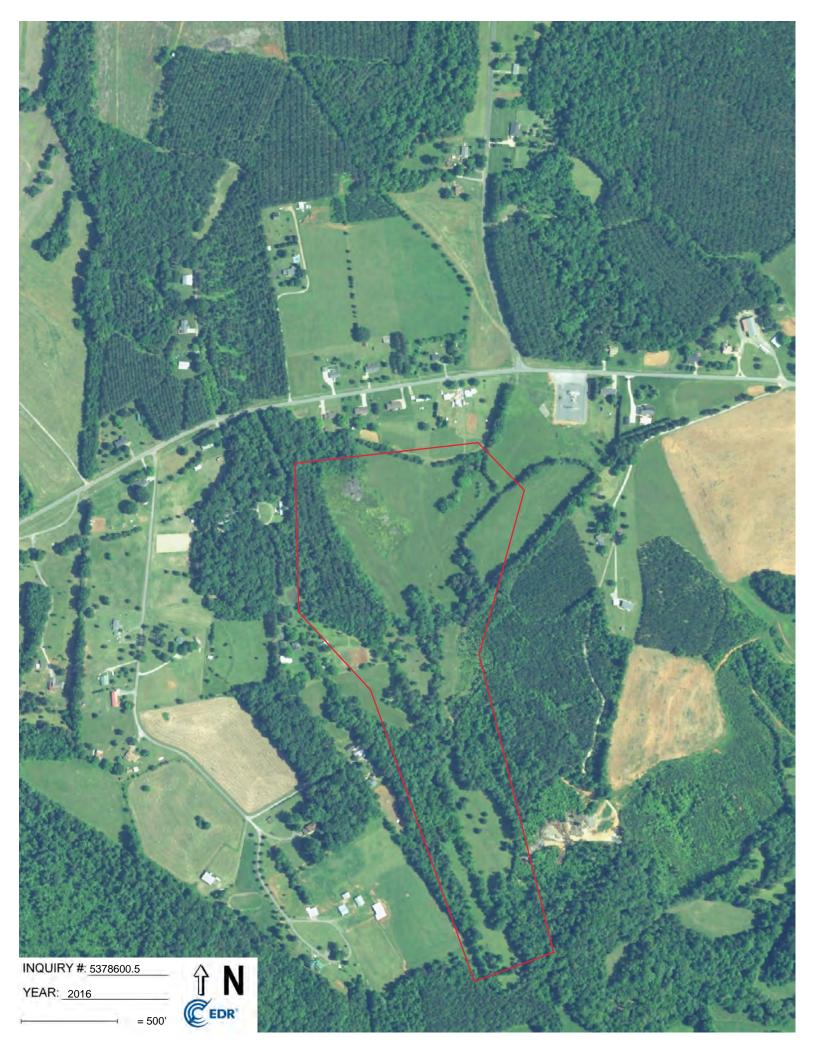
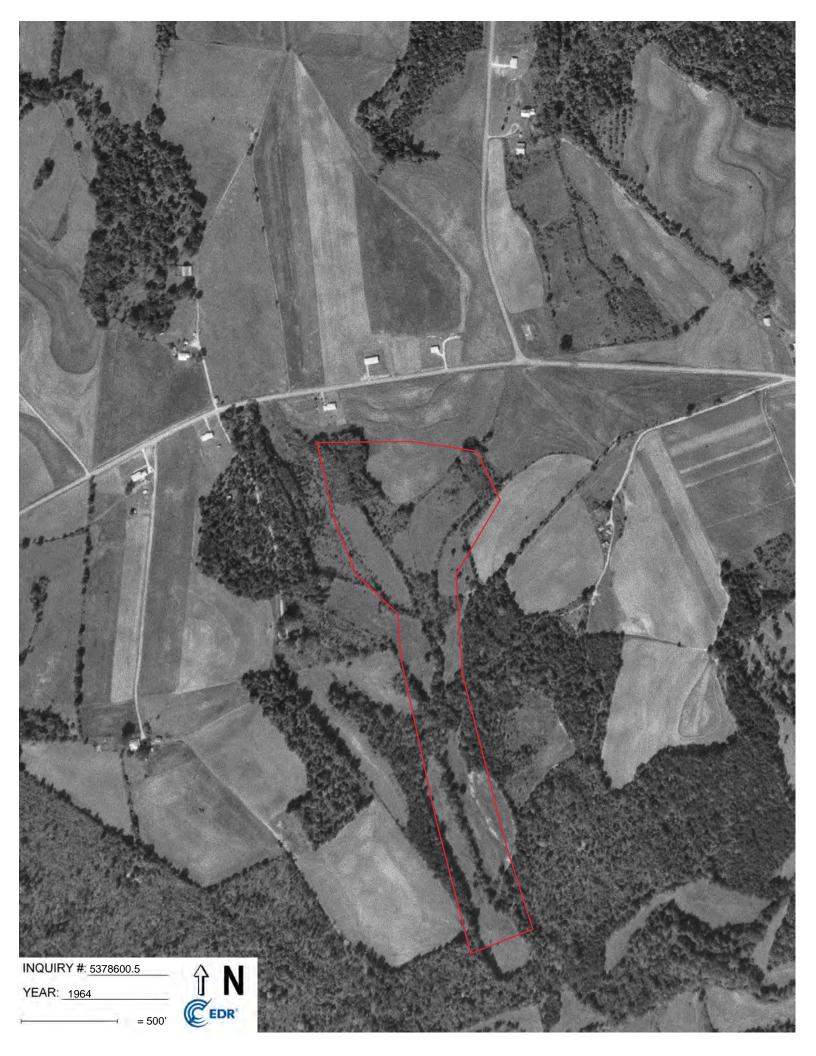

Current Landowner	PIN	County	Under Option to Purchase by Wildlands?	Memorandum of Option Conservation Easement Deed Book (DB) and Page Number (PG)	Acreage to be Protected
Lucille Mauney	3621611613962	Gaston	Yes	BK 4986 PG 2333 to 2336	6.75
Brian O'Neill Bumgarner	3621627101	Gaston	Yes	BK 4986 PG 2329 to 2332	2.60
Joyce Mccraw	3621720283	Gaston	Yes	BK 4986 PG 2325 to 2328	0.76
Annette Poole & Wilber Poole	3621618181	Gaston	Yes	BK 4986 PG 2341 to 2344	4.57
Diane Carpenter & Wade Carpenter Jr.	3621701221	Gaston	Yes	BK 4986 PG 2337 to 2340	3.34

Table 1: Site Protection Instrument – <i>Carpenter Bottom Mitigation Site</i>
--

The conservation easement template that will be used for recordation is included in this appendix. All site protection instruments require 60-day advance notification to the USACE and or DMS prior to any action to void, amend, or modify the document. No such action shall take place unless approved by the State.

APPENDIX 2 Historic Aerial Photos



APPENDIX 3 Jurisdictional Determination and Wetland Assessment Forms

U.S. ARMY CORPS OF ENGINEERS WILMINGTON DISTRICT

	Action Id. <u>SAW-2018-02062</u> Cour <u>West</u>	nty: <u>Gaston</u> U.S.G.S. (Quad: <u>NC- Lincolnton</u>
Requestor:	NOTIFICATION OF JU Kristi Suggs	RISDICTIONAL	DETERMINATION
Address:	1430 S. Mint Street #104		
Telephone Number: E-mail:	<u>Charlotte, NC 28203</u> <u>704-332-7754 ext 110</u> <u>ksuggs@wildlandseng.com</u>		
Size (acres)	<u>20</u>	Nearest Town	Lincolnton
Nearest Waterway	Beaverdam Creek	River Basin	Santee
USGS HUC	03050102	Coordinates	Latitude: 35.410705
			Longitude: -81.260321
Location description:	The review area is located 0.211 mi	les Gaston-Webbs Ch	apel Road and Huffstetler Lane in Gaston
	-62-8677, 3621-72-0270, 362172453		

Indicate Which of the Following Apply:

A. Preliminary Determination

There appear to be **waters, including wetlands** on the above described project area/property, that may be subject to Section 404 of the Clean Water Act (CWA)(33 USC § 1344) and/or Section 10 of the Rivers and Harbors Act (RHA) (33 USC § 403). The **waters, including wetlands** have been delineated, and the delineation has been verified by the Corps to be sufficiently accurate and reliable. The approximate boundaries of these waters are shown on the enclosed delineation map dated <u>3/12/2020</u>. Therefore this preliminary jurisdiction determination may be used in the permit evaluation process, including determining compensatory mitigation. For purposes of computation of impacts, compensatory mitigation requirements, and other resource protection measures, a permit decision made on the basis of a preliminary JD will treat all waters and wetlands that would be affected in any way by the permitted activity on the site as if they are jurisdictional waters of the U.S. This preliminary determination is not an appealable action under the Regulatory Program Administrative Appeal Process (Reference 33 CFR Part 331). However, you may request an approved JD, which is an appealable action, by contacting the Corps district for further instruction.

☐ There appear to be **waters, including wetlands** on the above described project area/property, that may be subject to Section 404 of the Clean Water Act (CWA)(33 USC § 1344) and/or Section 10 of the Rivers and Harbors Act (RHA) (33 USC § 403). However, since the **waters, including wetlands** have not been properly delineated, this preliminary jurisdiction determination may not be used in the permit evaluation process. Without a verified wetland delineation, this preliminary determination is merely an effective presumption of CWA/RHA jurisdiction over all of the **waters, including wetlands** at the project area, which is not sufficiently accurate and reliable to support an enforceable permit decision. We recommend that you have the **waters, including wetlands** on your project area/property delineated. As the Corps may not be able to accomplish this wetland delineation in a timely manner, you may wish to obtain a consultant to conduct a delineation that can be verified by the Corps.

B. Approved Determination

There are Navigable Waters of the United States within the above described project area/property subject to the permit requirements of Section 10 of the Rivers and Harbors Act (RHA) (33 USC § 403) and Section 404 of the Clean Water Act (CWA)(33 USC § 1344). Unless there is a change in law or our published regulations, this determination may be relied upon for a period not to exceed five years from the date of this notification.

There are **waters**, **including wetlands** on the above described project area/property subject to the permit requirements of Section 404 of the Clean Water Act (CWA) (33 USC § 1344). Unless there is a change in the law or our published regulations, this determination may be relied upon for a period not to exceed five years from the date of this notification.

We recommend you have the waters, including wetlands on your project area/property delineated. As the Corps may not be
able to accomplish this wetland delineation in a timely manner, you may wish to obtain a consultant to conduct a delineation that
can be verified by the Corps.

SAW-2020-02062

The waters, including wetlands on your project area/property have been delineated and the delineation has been verified by the Corps. The approximate boundaries of these waters are shown on the enclosed delineation map dated **DATE**. We strongly suggest you have this delineation surveyed. Upon completion, this survey should be reviewed and verified by the Corps. Once verified, this survey will provide an accurate depiction of all areas subject to CWA jurisdiction on your property which, provided there is no change in the law or our published regulations, may be relied upon for a period not to exceed five years.

The waters, including wetlands have been delineated and surveyed and are accurately depicted on the plat signed by the Corps Regulatory Official identified below on <u>DATE</u>. Unless there is a change in the law or our published regulations, this determination may be relied upon for a period not to exceed five years from the date of this notification.

There are no waters of the U.S., to include wetlands, present on the above described project area/property which are subject to the permit requirements of Section 404 of the Clean Water Act (33 USC 1344). Unless there is a change in the law or our published regulations, this determination may be relied upon for a period not to exceed five years from the date of this notification.

The property is located in one of the 20 Coastal Counties subject to regulation under the Coastal Area Management Act (CAMA). You should contact the Division of Coastal Management in Morehead City, NC, at (252) 808-2808 to determine their requirements.

Placement of dredged or fill material within waters of the US, including wetlands, without a Department of the Army permit may constitute a violation of Section 301 of the Clean Water Act (33 USC § 1311). Placement of dredged or fill material, construction or placement of structures, or work within navigable waters of the United States without a Department of the Army permit may constitute a violation of Sections 9 and/or 10 of the Rivers and Harbors Act (33 USC § 401 and/or 403). If you have any questions regarding this determination and/or the Corps regulatory program, please contact <u>Catherine M. Janiczak</u> at <u>704-510-1438</u> or <u>Catherine.M.Janiczak@usace.army.mil</u>.

C. Basis For Determination: Basis For Determination: <u>See the preliminary jurisdictional determination</u> form dated 05/20/2020.

D. Remarks: None.

E. Attention USDA Program Participants

This delineation/determination has been conducted to identify the limits of Corps' Clean Water Act jurisdiction for the particular site identified in this request. The delineation/determination may not be valid for the wetland conservation provisions of the Food Security Act of 1985. If you or your tenant are USDA Program participants, or anticipate participation in USDA programs, you should request a certified wetland determination from the local office of the Natural Resources Conservation Service, prior to starting work.

F. Appeals Information (This information applies only to approved jurisdictional determinations as indicated in B. above)

This correspondence constitutes an approved jurisdictional determination for the above described site. If you object to this determination, you may request an administrative appeal under Corps regulations at 33 CFR Part 331. Enclosed you will find a Notification of Appeal Process (NAP) fact sheet and request for appeal (RFA) form. If you request to appeal this determination you must submit a completed RFA form to the following address:

US Army Corps of Engineers South Atlantic Division Attn: Phillip Shannin, Review Officer 60 Forsyth Street SW, Room 10M15 Atlanta, Georgia 30303-8801

In order for an RFA to be accepted by the Corps, the Corps must determine that it is complete, that it meets the criteria for appeal under 33 CFR part 331.5, and that it has been received by the Division Office within 60 days of the date of the NAP. Should you decide to submit an RFA form, it must be received at the above address by **Not applicable**.

It is not necessary to submit an RFA form to the Division Office if you do not object to the determination in this correspondence.

Corps Regulatory Official: Catherine M.

Date of JD: 05/20/2020 Expiration Date of JD: Not applicable

SAW-2020-02062

The Wilmington District is committed to providing the highest level of support to the public. To help us ensure we continue to do so, please complete the Customer Satisfaction Survey located at http://corpsmapu.usace.army.mil/cm_apex/f?p=136:4:0

NOTIFICATION OF ADMINISTRATIVE APPEAL OPTIONS AND PROCESS AND REQUEST FOR APPEAL

Applicant: Kristi Suggs	File Number: SAW-2018-02062		Date: 05/20/2020
Attached is:		See Sect	ion below
INITIAL PROFFERED PERMIT (Standard Permit or	· Letter of permission)		А
PROFFERED PERMIT (Standard Permit or Letter of permission)		В	
PERMIT DENIAL			С
APPROVED JURISDICTIONAL DETERMINATION	N		D
PRELIMINARY JURISDICTIONAL DETERMINAT	ΓΙΟΝ		E

SECTION I - The following identifies your rights and options regarding an administrative appeal of the above decision. Additional information may be found at or <u>http://www.usace.army.mil/Missions/CivilWorks/RegulatoryProgramandPermits.aspx</u> or the Corps regulations at 33 CFR Part 331.

A: INITIAL PROFFERED PERMIT: You may accept or object to the permit.

- ACCEPT: If you received a Standard Permit, you may sign the permit document and return it to the district engineer for final authorization. If you received a Letter of Permission (LOP), you may accept the LOP and your work is authorized. Your signature on the Standard Permit or acceptance of the LOP means that you accept the permit in its entirety, and waive all rights to appeal the permit, including its terms and conditions, and approved jurisdictional determinations associated with the permit.
- OBJECT: If you object to the permit (Standard or LOP) because of certain terms and conditions therein, you may request that the permit be modified accordingly. You must complete Section II of this form and return the form to the district engineer. Your objections must be received by the district engineer within 60 days of the date of this notice, or you will forfeit your right to appeal the permit in the future. Upon receipt of your letter, the district engineer will evaluate your objections, or (c) not modify the permit to address all of your concerns, (b) modify the permit to address some of your objections, or (c) not modify the permit having determined that the permit for your reconsideration, as indicated in Section B below.

B: PROFFERED PERMIT: You may accept or appeal the permit

- ACCEPT: If you received a Standard Permit, you may sign the permit document and return it to the district engineer for final authorization. If you received a Letter of Permission (LOP), you may accept the LOP and your work is authorized. Your signature on the Standard Permit or acceptance of the LOP means that you accept the permit in its entirety, and waive all rights to appeal the permit, including its terms and conditions, and approved jurisdictional determinations associated with the permit.
- APPEAL: If you choose to decline the proffered permit (Standard or LOP) because of certain terms and conditions therein, you may appeal the declined permit under the Corps of Engineers Administrative Appeal Process by completing Section II of this form and sending the form to the division engineer. This form must be received by the division engineer within 60 days of the date of this notice.

C: PERMIT DENIAL: You may appeal the denial of a permit under the Corps of Engineers Administrative Appeal Process by completing Section II of this form and sending the form to the division engineer. This form must be received by the division engineer within 60 days of the date of this notice.

D: APPROVED JURISDICTIONAL DETERMINATION: You may accept or appeal the approved JD or provide new information.

- ACCEPT: You do not need to notify the Corps to accept an approved JD. Failure to notify the Corps within 60 days of the date of this notice, means that you accept the approved JD in its entirety, and waive all rights to appeal the approved JD.
- APPEAL: If you disagree with the approved JD, you may appeal the approved JD under the Corps of Engineers Administrative Appeal Process by completing Section II of this form and sending the form to the district engineer. This form must be received by the division engineer within 60 days of the date of this notice.

E: PRELIMINARY JURISDICTIONAL DETERMINATION: You do not need to respond to the Corps regarding the preliminary JD. The Preliminary JD is not appealable. If you wish, you may request an approved JD (which may be appealed), by contacting the Corps district for further instruction. Also you may provide new information for further consideration by the Corps to reevaluate the JD.

SECTION II - REQUEST FOR APPEAL or OBJECTIONS TO AN INITIAL PROFFERED PERMIT

REASONS FOR APPEAL OR OBJECTIONS: (Describe your reasons for appealing the decision or your objections to an initial proffered permit in clear concise statements. You may attach additional information to this form to clarify where your reasons or objections are addressed in the administrative record.)

ADDITIONAL INFORMATION: The appeal is limited to a review of the administrative record, the Corps memorandum for the record of the appeal conference or meeting, and any supplemental information that the review officer has determined is needed to clarify the administrative record. Neither the appellant nor the Corps may add new information or analyses to the record. However, you may provide additional information to clarify the location of information that is already in the administrative record.

POINT OF CONTACT FOR QUESTIONS OR INFORMA	TION:
If you have questions regarding this decision and/or the	If you only have questions regarding the appeal process you may
appeal process you may contact:	also contact:
District Engineer, Wilmington Regulatory Division	Mr. Phillip Shannin, Administrative Appeal Review Officer
Attn: Catherine M. Janiczak	CESAD-PDO
Charlotte Regulatory Office	U.S. Army Corps of Engineers, South Atlantic Division
U.S Army Corps of Engineers	60 Forsyth Street, Room 10M15
8430 University Executive Park Drive, Suite 615	Atlanta, Georgia 30303-8801
Charlotte, North Carolina 28262	Phone: (404) 562-5137
e e e	of entry to Corps of Engineers personnel, and any government
	ing the course of the appeal process. You will be provided a 15 day
notice of any site investigation, and will have the opportunit	ty to participate in all site investigations.
	Date: Telephone number:

	Date:	Telephone number:
Signature of appellant or agent.		

For appeals on Initial Proffered Permits send this form to:

District Engineer, Wilmington Regulatory Division, Attn: Catherine M. Janiczak, 69 Darlington Avenue, Wilmington, North Carolina 28403

For Permit denials, Proffered Permits and Approved Jurisdictional Determinations send this form to:

Division Engineer, Commander, U.S. Army Engineer Division, South Atlantic, Attn: Mr. Phillip Shannin, Administrative Appeal Officer, CESAD-PDO, 60 Forsyth Street, Room 10M15, Atlanta, Georgia 30303-8801 Phone: (404) 562-5137

PRELIMINARY JURISDICTIONAL DETERMINATION (PJD) FORM

BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR PJD: 05/20/2020

B. NAME AND ADDRESS OF PERSON REQUESTING PJD: Kristi Suggs, 1430 S. Mint Street #104, Charlotte, NC 28203

C. DISTRICT OFFICE, FILE NAME, AND NUMBER: Wilmington District, Carpenter Bottom PJD, SAW-2018-02062

D. PROJECT LOCATION(S) AND BACKGROUND INFORMATION: The review area is located 0.211 miles Gaston-Webbs Chapel Road and Huffstetler Lane in Gaston County. PIN(s): 3621-62-8677, 3621-72-0270, 3621724534, 3621-70-1117, 3621-62-6176, & 3621-61-2994..

(USE THE TABLE BELOW TO DOCUMENT MULTIPLE AQUATIC RESOURCES AND/OR AQUATIC RESOURCES AT DIFFERENT SITES)

State: NCCounty: GastonCity: LincolntonCenter coordinates of site (lat/long in degree decimal format): Latitude: 35.410705 Longitude: -81.260321

Universal Transverse Mercator:

Name of nearest waterbody: Beaverdam Creek

E. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):

□ Office (Desk) Determination. Date:

 \boxtimes Field Determination. Date(s): 05/20/2020

TABLE OF AQUATIC RESOURCES IN REVIEW AREA WHICH "MAY BE" SUBJECT TO REGULATORY JURISDICTION.

Site Number	Latitude (decimal degrees)	Longitude (decimal degrees)	Estimated amount of aquatic resources in review area (acreage and linear feet, if applicable	Type of aquatic resources (i.e., wetland vs. non- wetland waters)	Geographic authority to which the aquatic resource "may be" subject (i.e., Section 404 or Section 10/404)
1.) Carpenter Branch (Perennial)	35.408603	-81.259961	2,176 LF	Non-wetland waters	Section 404
2.) Carpenter Branch (Intermittent)	35.409587	-81.260431	376 LF	Non-wetland waters	Section 404
3.) UT1	35.407605	-81.259788	123 LF	Non-wetland waters	Section 404
4.) UT2	35.409336	-81.260015	245 LF	Non-wetland waters	Section 404
5.) UT3	35.409270	-81.260510	387 LF	Non-Wetland Waters	Section 404
6.) UT4	35.407494	-81.260019	61 LF	Non-Wetland Waters	Section 404
9.) Wetland A	35.404910	-81.258531	0.07	Wetland waters	Section 404
10.) Wetland B	35.406346	-81.259584	0.01	Wetland waters	Section 404
11.) Wetland C	35.405102	-81.259098	0.01	Wetland waters	Section 404

	12.) Wetland D	35.406650	-81.259826	0.01	wetland waters	Section 404
	13.) Wetland E	35.407647	-81.259794	0.001	Wetland waters	Section 404
ľ						

Site Number	Latitude (decimal degrees)	Longitude (decimal degrees)	Estimated amount of aquatic resources in review area (acreage and linear feet, if applicable	Type of aquatic resources (i.e., wetland vs. non- wetland waters)	Geographic authority to which the aquatic resource "may be" subject (i.e., Section 404 or Section 10/404)
14.) Wetland F	35.435084	-81.259752	0.07	Wetland waters	Section 404
15.) Wetland G	35.408871	-81.259671	0.01	Wetland waters	Section 404
16.) Wetland H	35.409599	-81.259679	0.39	Wetland waters	Section 404
17.) Wetland I	35.409577	-81.260181	0.36	Wetland waters	Section 404
18.) Wetland J	35.409340	-81.260397	0.01	Wetland waters	Section 404
19.) Wetland K	35.409333	-81.260885	0.01	Wetland waters	Section 404
20.) Wetland L	35.409334	-81.260740	0.02	Wetland waters	Section 404
21.) Wetland M	35.411225	-81.259599	1.02	Wetland waters	Section 404
22.) Wetland N	35.410976	-81.261605	2.35	Wetland waters	Section 404

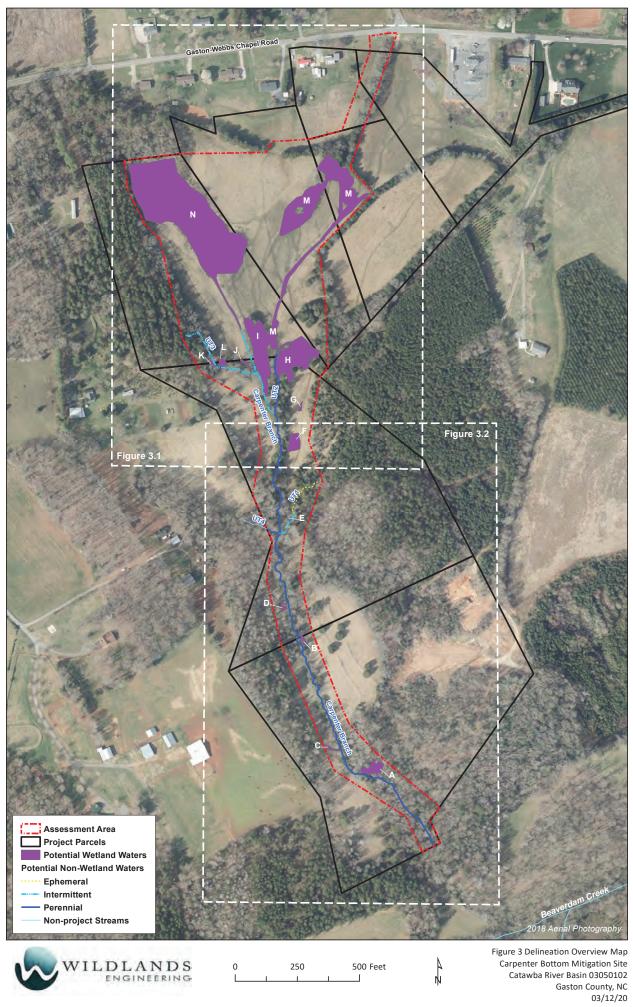
1) The Corps of Engineers believes that there may be jurisdictional aquatic resources in the review area, and the requestor of this PJD is hereby advised of his or her option to request and obtain an approved JD (AJD) for that review area based on an informed decision after having discussed the various types of JDs and their characteristics and circumstances when they may be appropriate.

2) In any circumstance where a permit applicant obtains an individual permit, or a Nationwide General Permit (NWP) or other general permit verification requiring "pre- construction notification" (PCN), or requests verification for a non-reporting NWP or other general permit, and the permit applicant has not requested an AJD for the activity, the permit applicant is hereby made aware that: (1) the permit applicant has elected to seek a permit authorization based on a PJD, which does not make an official determination of jurisdictional aquatic resources; (2) the applicant has the option to request an AJD before accepting the terms and conditions of the permit authorization, and that basing a permit authorization on an AJD could possibly result in less compensatory mitigation being required or different special conditions; (3) the applicant has the right to request an individual permit rather than accepting the terms and conditions of the NWP or other general permit authorization; (4) the applicant can accept a permit authorization and thereby agree to comply with all the terms and conditions of that permit, including whatever mitigation requirements the Corps has determined to be necessary; (5) undertaking any activity in reliance upon the subject permit authorization without requesting an AJD constitutes the applicant's acceptance of the use of the PJD; (6) accepting a permit authorization (e.g., signing a proffered individual permit) or undertaking any activity in reliance on any form of Corps permit authorization based on a PJD constitutes agreement that all aquatic resources in the review area affected in any way by that activity will be treated as jurisdictional, and waives any challenge to such

jurisdiction in any administrative or judicial compliance or enforcement action, or in any administrative appeal or in any Federal court; and (7) whether the applicant elects to use either an AJD or a PJD, the JD will be processed as soon as practicable. Further, an AJD, a proffered individual permit (and all terms and conditions contained therein), or individual permit denial can be administratively appealed pursuant to 33 C.F.R. Part 331. If, during an administrative appeal, it becomes appropriate to make an official determination whether geographic jurisdiction exists over aquatic resources in the review area, or to provide an official delineation of jurisdictional aquatic resources in the review area, the Corps will provide an AJD to accomplish that result, as soon as is practicable. This PJD finds that there "may be" waters of the U.S. and/or that there "may be" navigable waters of the U.S. on the subject review area, and identifies all aquatic features in the review area that could be affected by the proposed activity, based on the following information:

SUPPORTING DATA. Data reviewed for PJD (check all that apply)

Checked items should be included in subject file. Appropriately reference sources below where indicated for all checked items:
Maps, plans, plots or plat submitted by or on behalf of the PJD requestor: Map: Figure 3 (Dated 03/12/2020)
Data sheets prepared/submitted by or on behalf of the PJD requestor.
Office concurs with data sheets/delineation report.
Office does not concur with data sheets/delineation report. Rationale:
Data sheets prepared by the Corps:
Corps navigable waters' study:
U.S. Geological Survey Hydrologic Atlas:
USGS NHD data.
USGS 8 and 12 digit HUC maps.
U.S. Geological Survey map(s). Cite scale & quad name: 1:24000 Scale Lincolnton W quandrangle_
🛛 Natural Resources Conservation Service Soil Survey. Citation: NRCS Web Soil Survey Website_
National wetlands inventory map(s). Cite name: USFWS National Wetlands Inventory
State/local wetland inventory map(s):
FEMA/FIRM maps:
100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
Photographs: Aerial (Name & Date): Figure 3 (Dated 03/12/2020)
or Other (Name & Date):
Previous determination(s). File no. and date of response letter:
Other information (please specify):


IMPORTANT NOTE: The information recorded on this form has not necessarily been verified by the Corps and should not be relied upon for later jurisdictional determinations.

Catherine M. Janiczak Signature and date of Regulatory

Signature and date of Regulatory staff member completing PJD 05/20/2020

Signature and date of person requesting PJD (REQUIRED, unless obtaining the signature is impracticable)¹

¹ Districts may establish timeframes for requester to return signed PJD forms. If the requester does not respond within the established time frame, the district may presume concurrence and no additional follow up is necessary prior to finalizing an action.

NC WAM FIELD ASSESSMENT FORM

Accom	panies	User	Manual	Version	5.

USACE AID #	Accompanies Use	er Manual Version 5.0 NCDWR#	1
Project Nan	ne Carpenter Bottom Mitigation Site	Date of Evaluation	4/1/2020
Applicant/Owner Nan		Wetland Site Name	Wetland A
Wetland Typ		Assessor Name/Organization	Jordan Hessler/ WEI
Level III Ecoregio		Nearest Named Water Body	Beaverdam Creek
River Bas	in Catawba	USGS 8-Digit Catalogue Unit	03050102
Coun	·	NCDWR Region	Mooresville
🗌 Yes 🖾 N	lo Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees)	35.40491/-81.258531
Please circle and/or m recent past (for instan- - Hydrological - Surface and tanks, under - Signs of veg - Habitat/plant Is the assessment an Regulatory Consider - Anadromous - Federally pro - NCDWR ripa - Abuts a Prim - Publicly own - N.C. Divisior - Abuts a strea - Designated M - Abuts a 303(otected species or State endangered or threate arian buffer rule in effect ary Nursery Area (PNA) ed property of Coastal Management Area of Environment am with a NCDWQ classification of SA or supp NCNHP reference community d)-listed stream or a tributary to a 303(d)-listed	ssors is apparent. Consider departure f ude, but are not limited to the following. ver dams, dikes, berms, ponds, etc.) ples: discharges containing obvious pollu c.) , insect damage, disease, storm damage, ear-cutting, exotics, etc.) o ated? ⊠Yes □No If Yes, check all that ened species cal Concern (AEC) (including buffer) lemental classifications of HQW, ORW, of a stream	itants, presence of nearby septic , salt intrusion, etc.) It apply to the assessment area.
What type of natural	stream is associated with the wetland, if an	y? (check all that apply)	
Blackwater			
Brownwater Tidal (if tidal,	check one of the following boxes)	r 🗍 Wind 🗍 Both	
	°		
Is the assessment ar	ea on a coastal island? 🗌 Yes 🛛 No		
Is the assessment ar	ea's surface water storage capacity or dura	tion substantially altered by beaver?	🗌 Yes 🛛 No
Does the assessmen	t area experience overbank flooding during	normal rainfall conditions? 🛛 Yes	🗌 No
1. Ground Surface C	Condition/Vegetation Condition – assessme	nt area condition metric	
Check a box in ea	ch column. Consider alteration to the ground Compare to reference wetland if applicable (se	l surface (GS) in the assessment area an	
⊠A □A □B ⊠B	Not severely altered Severely altered over a majority of the assess sedimentation, fire-plow lanes, skidder tracks		
	alteration examples: mechanical disturbance, diversity [if appropriate], hydrologic alteration)	herbicides, salt intrusion [where appropri	iate], exotic species, grazing, less
2. Surface and Sub-	Surface Storage Capacity and Duration – as	ssessment area condition metric	
Consider both incr deep is expected to Surf Sub	ch column. Consider surface storage capacit ease and decrease in hydrology. A ditch ≤ 1 to affect both surface and sub-surface water. C	toot deep is considered to affect surface consider tidal flooding regime, if applicabl	water only, while a ditch > 1 foot
⊠B □B □C □C	Water storage capacity and duration are not a Water storage capacity or duration are altered Water storage capacity or duration are substa (examples: draining, flooding, soil compaction	l, but not substantially (typically, not suffic ntially altered (typically, alteration sufficie , filling, excessive sedimentation, underg	ent to result in vegetation change) round utility lines).
-	rface Relief – assessment area/wetland typ		
	ch column. Select the appropriate storage fo	r the assessment area (AA) and the wetl	and type (WT).
🛛 В 🖾 В	Majority of wetland with depressions able to p Majority of wetland with depressions able to p Majority of wetland with depressions able to p Depressions able to pond water < 3 inches de	ond water 6 inches to 1 foot deep ond water 3 to 6 inches deep	
	that maximum donth of inundation is greater t		

 \Box A Evidence that maximum depth of inundation is greater than 2 feet \Box B Evidence that maximum depth of inundation is between 1 and 2 feet \Box C Evidence that maximum depth of inundation is less than 1 foot 3b.

4. Soil Texture/Structure - assessment area condition metric (skip for all marshes)

Check a box from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. Make soil observations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional indicators.

4a. □A	Sandy soil
⊠B	Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres)
□C	Loamy or clayey soils not exhibiting redoximorphic features
□D	Loamy or clayey gleyed soil
Ē	Histosol or histic epipedon
4b. ⊠A	Soil ribbon < 1 inch
□B	Soil ribbon ≥ 1 inch

4c. $\square A$ No peat or muck presence

B A peat or muck presence

5. Discharge into Wetland – opportunity metric

Check a box in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples of sub-surface discharges include presence of nearby septic tank, underground storage tank (UST), etc.

- - A Little or no evidence of pollutants or discharges entering the assessment area
- B B Noticeable evidence of pollutants or discharges entering the wetland and stressing, but not overwhelming the treatment capacity of the assessment area
- C Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)

6. Land Use – opportunity metric (skip for non-riparian wetlands)

Check all that apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining to assessment area within entire upstream watershed (WS), within 5 miles <u>and</u> within the watershed draining to the assessment area (5M), <u>and</u> within 2 miles and within the watershed draining to the assessment area (2M).

WS 5M 2M ΠA ΠA ΠA > 10% impervious surfaces ⊡в ⊟в ⊟в Confined animal operations (or other local, concentrated source of pollutants ⊠c ⊠C ⊠C ≥ 20% coverage of pasture ΠD ΠD ΔD \geq 20% coverage of agricultural land (regularly plowed land) ΠE E E ≥ 20% coverage of maintained grass/herb ĽĴF F F ≥ 20% coverage of clear-cut land G □G □G Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed or hydrologic alterations that prevent drainage and/or overbank flow from affecting the assessment area

7. Wetland Acting as Vegetated Buffer - assessment area/wetland complex condition metric (skip for non-riparian wetlands)

- 7a. Is assessment area within 50 feet of a tributary or other open water?
 - \boxtimes Yes \square No If Yes, continue to 7b. If No, skip to Metric 8.

Wetland buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.

- 7b. How much of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
 - A ≥ 50 feet

7c.

- B From 30 to < 50 feet
- \overrightarrow{BC} From 15 to < 30 feet
- D From 5 to < 15 feet
- E < 5 feet <u>or</u> buffer bypassed by ditches
- Tributary width. If the tributary is anastomosed, combine widths of channels/braids for a total width.
- $\boxtimes \leq$ 15-feet wide $\square >$ 15-feet wide \square Other open water (no tributary present)
- 7d. Do roots of assessment area vegetation extend into the bank of the tributary/open water? ⊠Yes □No
- 7e. Is stream or other open water sheltered or exposed?
 ☑ Sheltered adjacent open water with width < 2500 feet and no regular boat traffic.
 ☑ Exposed adjacent open water with width ≥ 2500 feet or regular boat traffic.
- Wetland Width at the Assessment Area wetland type/wetland complex condition metric (evaluate WT for all marshes and Estuarine Woody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest only)

Check a box in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and the wetland complex at the assessment area (WC). See User Manual for WT and WC boundaries.

WT WC ΠA ΠA ≥ 100 feet Πв ΠВ From 80 to < 100 feet □с □с From 50 to < 80 feet From 40 to < 50 feet D D ΠE E From 30 to < 40 feet From 15 to < 30 feet ΠF ΠF G ΠG From 5 to < 15 feet ⊟н ΠН < 5 feet

9. Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)

Answer for assessment area dominant landform.

- Evidence of short-duration inundation (< 7 consecutive days) ⊠Α
- ⊡в Evidence of saturation, without evidence of inundation
- □c Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)

10. Indicators of Deposition - assessment area condition metric (skip for non-riparian wetlands and all marshes)

- Consider recent deposition only (no plant growth since deposition).
- ⊠A □B Sediment deposition is not excessive, but at approximately natural levels.
 - Sediment deposition is excessive, but not overwhelming the wetland.
- Пс Sediment deposition is excessive and is overwhelming the wetland.

11. Wetland Size - wetland type/wetland complex condition metric

Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT WC

FW (if applicable)

A

⊡в

ΠE

⊠J

ΠK

Πĸ

- ≥ 500 acres ΔA A □В □В From 100 to < 500 acres □С From 50 to < 100 acres D From 25 to < 50 acres
 - ΠE ΠE From 10 to < 25 acres
- ΠF ΠF ΠF From 5 to < 10 acres
- ΠG ΠG ΠG From 1 to < 5 acres
- From 0.5 to < 1 acre ШΗ ШН ШН
 - From 0.1 to < 0.5 acre
 - ΜJ ΜJ From 0.01 to < 0.1 acre
 - ΠK < 0.01 acre or assessment area is clear-cut

12. Wetland Intactness - wetland type condition metric (evaluate for Pocosins only)

- Πа Pocosin is the full extent ($\geq 90\%$) of its natural landscape size.
- ΠВ Pocosin type is < 90% of the full extent of its natural landscape size.

13. Connectivity to Other Natural Areas - landscape condition metric

13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide.

Well	Loosely	
ΠA		≥ 500 acres
В	⊠В	From 100 to < 500 acres
⊠C	C	From 50 to < 100 acres
D	D	From 10 to < 50 acres
ΠE	ΠE	< 10 acres
□F	□F	Wetland type has a poor or no connection to other natural habitats

13b. Evaluate for marshes only.

Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands. Yes No

14. Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)

May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C."

Α	0
₫в	1 to 4

ПС 5 to 8

15. Vegetative Composition - assessment area condition metric (skip for all marshes and Pine Flat)

- Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate ΠA species, with exotic plants absent or sparse within the assessment area.
- ⊡В Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata.
- ⊠C Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of noncharacteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.

16. Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)

- Πа Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics).
- В Vegetation diversity is low or has > 10% to 50% cover of exotics.
- ⊠c Vegetation is dominated by exotic species (> 50 % cover of exotics).

17. Vegetative Structure - assessment area/wetland type condition metric

- 17a. Is vegetation present? ⊠Yes □No If Yes, continue to 17b. If No, skip to Metric 18.
- 17b. Evaluate percent coverage of assessment area vegetation for all marshes only. Skip to 17c for non-marsh wetlands. $\Box A \ge 25\%$ coverage of vegetation
 - B < 25% coverage of vegetation
- 17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.

, acar		WT A B C	Canopy closed, or nearly closed, with natural gaps associated with natural processes Canopy present, but opened more than natural gaps Canopy sparse or absent
Mid-Ston/		□A □B ⊠C	Dense mid-story/sapling layer Moderate density mid-story/sapling layer Mid-story/sapling layer sparse or absent
quido		⊟A ⊟B ⊠C	Dense shrub layer Moderate density shrub layer Shrub layer sparse or absent
horb	a □A ▣ □B	□A □B	Dense herb layer Moderate density herb layer

 $\square C$ $\square C$ Herb layer sparse or absent

18. Snags - wetland type condition metric (skip for all marshes)

□A Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability).
 □A Not A

19. Diameter Class Distribution – wetland type condition metric (skip for all marshes)

- A Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are present.
- B Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH.
- \square C Majority of canopy trees are < 6 inches DBH or no trees.

20. Large Woody Debris - wetland type condition metric (skip for all marshes)

Include both natural debris and man-placed natural debris.

□A Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability).
 □A Not A

21. Vegetation/Open Water Dispersion – wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)

Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.

22. Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)

Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.

A Overbank and overland flow are not severely altered in the assessment area.

- B Overbank flow is severely altered in the assessment area.
- C Overland flow is severely altered in the assessment area.
- D Both overbank and overland flow are severely altered in the assessment area.

Notes

NC WAM Wetland Rating Sheet Accompanies User Manual Version 5.0

Wetland Site Name Wetland A	Date of Assessment	4/1/20
Wetland Type Headwater Forest	Assessor Name/Organization	Jordan Hessler/WEI
Notes on Field Assessment Form (Y/N)		NO
Presence of regulatory considerations (Y/N)		
Wetland is intensively managed (Y/N)		
Assessment area is located within 50 feet of a natural trib	YES	
Assessment area is substantially altered by beaver (Y/N)		NO
Assessment area experiences overbank flooding during normal rainfall conditions (Y/N)		YES
Assessment area is on a coastal island (Y/N)		NO

Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention Sub-surface Storage and	Condition	LOW
	Retention	Condition	HIGH
Water Quality	Pathogen Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
	Particulate Change	Condition	LOW
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
	Soluble Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Physical Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat	Physical Structure	Condition	LOW
	Landscape Patch Structure	Condition	LOW
	Vegetation Composition	Condition	LOW
unction Rating Summary			
Function		Metrics	Rating
Hydrology		Condition	MEDIUM
Water Quality		Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
Habitat		Condition	LOW

Sub-function Rating Summary

Overall Wetland Rating LOW

NC WAM FIELD ASSESSMENT FORM Accompanies User Manual Version 5.0

		Accompanies		1
USAC	CE AID #	Corportor Pottom Mitigation Site	NCDWR#	4/1/2020
A	Project Nar	i	Date of Evaluation	4/1/2020
Appl	licant/Owner Nar		Wetland Site Name	Wetland B, D, & E
	Wetland Ty		Assessor Name/Organization	Jordan Hessler/ WEI
	Level III Ecoregi		Nearest Named Water Body	Beaverdam Creek
	River Bas		USGS 8-Digit Catalogue Unit	03050102
	Cour		NCDWR Region	Mooresville
	🗌 Yes 🛛 I	No Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees)	35.406346/-81.259584
Pleas recen	se circle and/or r t past (for instan Hydrologica Surface and tanks, under Signs of veg Habitat/plan assessment ar assessment ar Anadromous Federally pr NCDWR rip Abuts a Prin Publicly owr N.C. Division	ce, within 10 years). Noteworthy stressors is modifications (examples: ditches, dams, b sub-surface discharges into the wetland (ex ground storage tanks (USTs), hog lagoons, etation stress (examples: vegetation morta t community alteration (examples: mowing, rea intensively managed? Yes rations - Were regulatory considerations even is fish otected species or State endangered or threa arian buffer rule in effect mary Nursery Area (PNA) ed property n of Coastal Management Area of Environm	tressors is apparent. Consider departure f include, but are not limited to the following. eaver dams, dikes, berms, ponds, etc.) amples: discharges containing obvious pollu etc.) lity, insect damage, disease, storm damage clear-cutting, exotics, etc.) No aluated? ⊠Yes ⊡No If Yes, check all that eatened species ental Concern (AEC) (including buffer)	itants, presence of nearby septic , salt intrusion, etc.) It apply to the assessment area.
	Abuts a stre Designated		upplemental classifications of HQW, ORW,	or Trout
What	Blackwater Brownwater	stream is associated with the wetland, if		
		, s, <u> </u>		
Is the	e assessment a	r ea on a coastal island? 🗌 Yes 🛛 I	No	
Is the	assassmant a	ea's surface water storage capacity or d	uration substantially altered by beaver?	🗌 Yes 🛛 No
Does	ine assessmer	it area experience overbank flooding dur	ing normal rainfall conditions? 🛛 Yes	□ No
1. G	round Surface	Condition/Vegetation Condition – assess	ment area condition metric	
CI as	heck a box in e assessment area. Tea based on evi	ach column. Consider alteration to the grou Compare to reference wetland if applicable	und surface (GS) in the assessment area ar (see User Manual). If a reference is not ap	
		Not severely altered		
	₫в ⊠в	Severely altered over a majority of the asse sedimentation, fire-plow lanes, skidder tra	essment area (ground surface alteration exa icks, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where appropr on)	pollutants) (vegetation structure
2. Si	urface and Sub	Surface Storage Capacity and Duration -	 assessment area condition metric 	
C				rease consolity and dynation (Cych)
de Su	onsider both inci eep is expected t urf Sub]A ⊠A	ease and decrease in hydrology. A ditch ≤ o affect both surface and sub-surface water Water storage capacity and duration are no		water only, while a ditch > 1 foot le.
de Sι ⊠	onsider both incr eep is expected t urf Sub	ease and decrease in hydrology. A ditch ≤ o affect both surface and sub-surface water Water storage capacity and duration are no Water storage capacity or duration are alte Water storage capacity or duration are sub	1 foot deep is considered to affect surface Consider tidal flooding regime, if applicab	water only, while a ditch > 1 foot le. cient to change vegetation). ent to result in vegetation change)
de Sι ⊠⊠	onsider both inc eep is expected t urf Sub]A ⊠A]B ⊟B]C ⊟C	ease and decrease in hydrology. A ditch ≤ o affect both surface and sub-surface water Water storage capacity and duration are no Water storage capacity or duration are alte Water storage capacity or duration are sub (examples: draining, flooding, soil compact	 1 foot deep is considered to affect surface Consider tidal flooding regime, if applicab ot altered. red, but not substantially (typically, not sufficient stantially altered (typically, alteration sufficient 	water only, while a ditch > 1 foot le. cient to change vegetation). ent to result in vegetation change) round utility lines).
de Sı ⊠ 3. ₩	onsider both inc eep is expected t urf Sub]A ⊠A]B ⊟B]C ⊡C	ease and decrease in hydrology. A ditch o affect both surface and sub-surface water Water storage capacity and duration are no Water storage capacity or duration are alte Water storage capacity or duration are sub (examples: draining, flooding, soil compact inface Relief – assessment area/wetland f	 1 foot deep is considered to affect surface Consider tidal flooding regime, if applicab bt altered. red, but not substantially (typically, not sufficient stantially altered (typically, alteration sufficient suffi	water only, while a ditch > 1 foot le. cient to change vegetation). ent to result in vegetation change) round utility lines).
de Sı ⊠⊠ □ 3. W Cl	onsider both inc eep is expected t urf Sub]A ⊠A]B ⊟B]C ⊡C	ease and decrease in hydrology. A ditch o affect both surface and sub-surface water Water storage capacity and duration are no Water storage capacity or duration are alte Water storage capacity or duration are sub (examples: draining, flooding, soil compact inface Relief – assessment area/wetland f	I foot deep is considered to affect surface. Consider tidal flooding regime, if applicab ot altered. red, but not substantially (typically, not suffi- stantially altered (typically, alteration sufficie ion, filling, excessive sedimentation, underg type condition metric (skip for all marshe e for the assessment area (AA) and the wet o pond water > 1 deep o pond water 6 inches to 1 foot deep o pond water 3 to 6 inches deep	water only, while a ditch > 1 foot le. cient to change vegetation). ent to result in vegetation change) round utility lines).

 \square B Evidence that maximum depth of inundation is between 1 and 2 feet \square C Evidence that maximum depth of inundation is less than 1 foot

Soil Texture/Structure – assessment area condition metric (skip for all marshes) 4.

Check a box from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. Make soil observations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional indicators

-	4a. 🛛 A	Sandy soil
	⊠B ⊡C	Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres) Loamy or clayey soils not exhibiting redoximorphic features
		Loamy or clayey gleyed soil Histosol or histic epipedon
4	4b. ⊠A □B	Soil ribbon < 1 inch Soil ribbon ≥ 1 inch

4c. 🖾 A No peat or muck presence

⊡в A peat or muck presence

Discharge into Wetland - opportunity metric 5.

Check a box in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples of sub-surface discharges include presence of nearby septic tank, underground storage tank (UST), etc. Sub

- Surf A
 - Little or no evidence of pollutants or discharges entering the assessment area ⊠Α
- ⊠в ⊡в Noticeable evidence of pollutants or discharges entering the wetland and stressing, but not overwhelming the treatment capacity of the assessment area
- □С ПС Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)

6. Land Use - opportunity metric (skip for non-riparian wetlands)

Check all that apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining to assessment area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M), and within 2 miles and within the watershed draining to the assessment area (2M).

WS 5M 2M ΠA ΠA ΠA > 10% impervious surfaces ⊡в ⊟в ⊟в Confined animal operations (or other local, concentrated source of pollutants ⊠c ⊠C ⊠C ≥ 20% coverage of pasture ΠD ΠD ΔD \geq 20% coverage of agricultural land (regularly plowed land) ΠE E E ≥ 20% coverage of maintained grass/herb ĽĴF F F ≥ 20% coverage of clear-cut land G □G □G Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed or hydrologic alterations that prevent drainage and/or overbank flow from affecting the assessment area

Wetland Acting as Vegetated Buffer - assessment area/wetland complex condition metric (skip for non-riparian wetlands) 7.

- Is assessment area within 50 feet of a tributary or other open water? 7a.
 - □No XYes If Yes, continue to 7b. If No, skip to Metric 8.

Wetland buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.

- How much of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
 - ≥ 50 feet ΠA

7c.

- From 30 to < 50 feet
- From 15 to < 30 feet
- ΔD From 5 to < 15 feet
- < 5 feet or buffer bypassed by ditches ΠE
- Tributary width. If the tributary is anastomosed, combine widths of channels/braids for a total width.
- $\boxtimes \leq 15$ -feet wide $\square > 15$ -feet wide \square Other open water (no tributary present)
- 7d. Do roots of assessment area vegetation extend into the bank of the tributary/open water? ⊠Yes No
- 7e. Is stream or other open water sheltered or exposed? Sheltered – adjacent open water with width < 2500 feet and no regular boat traffic. Exposed – adjacent open water with width ≥ 2500 feet or regular boat traffic.
- Wetland Width at the Assessment Area wetland type/wetland complex condition metric (evaluate WT for all marshes and 8 Estuarine Woody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest only)

Check a box in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and the wetland complex at the assessment area (WC). See User Manual for WT and WC boundaries.

WT WC ΠA ΠA ≥ 100 feet Πв ΠВ From 80 to < 100 feet □с □с From 50 to < 80 feet From 40 to < 50 feet D D E E From 30 to < 40 feet From 15 to < 30 feet F ΠF G ΠG From 5 to < 15 feet ⊟н ΠН < 5 feet

9. Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)

Answer for assessment area dominant landform.

- Evidence of short-duration inundation (< 7 consecutive days) ⊠Α
- ⊡в Evidence of saturation, without evidence of inundation
- □c Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)

10. Indicators of Deposition - assessment area condition metric (skip for non-riparian wetlands and all marshes)

- Consider recent deposition only (no plant growth since deposition).
- ⊠A □B Sediment deposition is not excessive, but at approximately natural levels.
 - Sediment deposition is excessive, but not overwhelming the wetland.
- Пс Sediment deposition is excessive and is overwhelming the wetland.

11. Wetland Size - wetland type/wetland complex condition metric

Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT WC

FW (if applicable) ≥ 500 acres

A

⊡в

٦J

⊠κ

⊠κ

- ΔA A □В □В From 100 to < 500 acres □С From 50 to < 100 acres D From 25 to < 50 acres
- ΠE From 10 to < 25 acres
 - ΠE ΠE
- ΠF ΠF ΠF From 5 to < 10 acres
- ΠG ΠG ΠG From 1 to < 5 acres
- From 0.5 to < 1 acre ШΗ ШН ШН
 - From 0.1 to < 0.5 acre
 - ΠJ ΠJ From 0.01 to < 0.1 acre
 - ⊠κ < 0.01 acre or assessment area is clear-cut

12. Wetland Intactness - wetland type condition metric (evaluate for Pocosins only)

- Πа Pocosin is the full extent ($\geq 90\%$) of its natural landscape size.
- ΠВ Pocosin type is < 90% of the full extent of its natural landscape size.

13. Connectivity to Other Natural Areas - landscape condition metric

13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide.

Well	Loosely	
ΠA		≥ 500 acres
В	⊠В	From 100 to < 500 acres
⊠C	□С	From 50 to < 100 acres
D	D	From 10 to < 50 acres
ΠE	ΠE	< 10 acres
□F	□F	Wetland type has a poor or no connection to other natural habitats

13b. Evaluate for marshes only.

Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands. Yes No

14. Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)

May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C."

A	0
В	1 to 4

⊠C 5 to 8

15. Vegetative Composition - assessment area condition metric (skip for all marshes and Pine Flat)

- Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate ΠA species, with exotic plants absent or sparse within the assessment area.
- ⊡В Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata.
- ⊠C Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of noncharacteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.

16. Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)

- Πа Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics).
- Vegetation diversity is low or has > 10% to 50% cover of exotics. ⊠В
- □с Vegetation is dominated by exotic species (> 50 % cover of exotics).

17. Vegetative Structure – assessment area/wetland type condition metric

- 17a. Is vegetation present? If Yes, continue to 17b. If No, skip to Metric 18. ⊠Yes □No
- 17b. Evaluate percent coverage of assessment area vegetation for all marshes only. Skip to 17c for non-marsh wetlands. ≥ 25% coverage of vegetation A ⊡в
 - < 25% coverage of vegetation
- 17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.

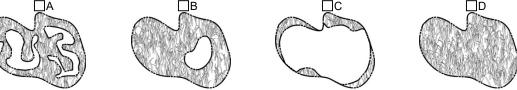
Mid-Story Canopy	AA □A □C □A □C	WT □A □C □C □A □C	Canopy closed, or nearly closed, with natural gaps associated with natural processes Canopy present, but opened more than natural gaps Canopy sparse or absent Dense mid-story/sapling layer Moderate density mid-story/sapling layer Mid-story/sapling layer sparse or absent
Shrub	□A	□A	Dense shrub layer
	⊠B	⊠B	Moderate density shrub layer
	□C	□C	Shrub layer sparse or absent
Herb	□A	□A	Dense herb layer
	⊠B	⊠B	Moderate density herb layer
	□C	□C	Herb layer sparse or absent

18. Snags - wetland type condition metric (skip for all marshes)

Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability). ⊠в Not A

19. Diameter Class Distribution – wetland type condition metric (skip for all marshes)

- Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are present.
- Πв . Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH.
- ⊠С Majority of canopy trees are < 6 inches DBH or no trees.


20. Large Woody Debris – wetland type condition metric (skip for all marshes)

Include both natural debris and man-placed natural debris.

ΠA Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability). ⊠в Not A

21. Vegetation/Open Water Dispersion – wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)

Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.

22. Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)

Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.

Overbank and overland flow are not severely altered in the assessment area. A

- ⊠В Overbank flow is severely altered in the assessment area.
- □С Overland flow is severely altered in the assessment area.

D Both overbank and overland flow are severely altered in the assessment area.

Notes

Wetlands abut streams in floodplain areas.

NC WAM Wetland Rating Sheet Accompanies User Manual Version 5.0

Wetland Site Name Wetland B, D, & E	Date of Assessment	4/1/20
Wetland Type Headwater Forest	Assessor Name/Organization	Jordan Hessler/WEI
Notes on Field Assessment Form (Y/N)		NO
Presence of regulatory considerations (Y/N)		NO
Wetland is intensively managed (Y/N)	YES	
Assessment area is located within 50 feet of a natural trib	YES	
Assessment area is substantially altered by beaver (Y/N)		NO
Assessment area experiences overbank flooding during n	ormal rainfall conditions (Y/N)	YES
Assessment area is on a coastal island (Y/N)		NO

Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention Sub-surface Storage and	Condition	LOW
	Retention	Condition	HIGH
Water Quality	Pathogen Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
	Particulate Change	Condition	MEDIUM
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
	Soluble Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Physical Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat	Physical Structure	Condition	LOW
	Landscape Patch Structure	Condition	LOW
	Vegetation Composition	Condition	LOW
unction Rating Summa	ry		
Function		Metrics	Rating
Hydrology		Condition	MEDIUM
Water Quality		Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
Habitat		Condition	LOW

Sub-function Rating Summary

NC WAM FIELD ASSESSMENT FORM

	ccompanies	s Usei	r Manual	Vers	ion	5.
--	------------	--------	----------	------	-----	----

			r Manual Version 5.0	
USAC	E AID #		NCDWR#	
	Project Nan		Date of Evaluation	4/1/2020
Applie	cant/Owner Nan		Wetland Site Name	Wetland C
	Wetland Ty		Assessor Name/Organization	Jordan Hessler/ WEI
L	evel III Ecoregio		Nearest Named Water Body	Beaverdam Creek
	River Bas		USGS 8-Digit Catalogue Unit	03050102
	Cour		NCDWR Region	Mooresville
	🗌 Yes 🛛 N	lo Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees)	35.405102/-81.259098
Please recent • • • • •	e circle and/or n past (for instan- Hydrological Surface and tanks, under Signs of veg Habitat/plant assessment ar atory Consider Anadromous Federally pro NCDWR ripa Abuts a Prim Publicly own N.C. Divisior Abuts a strea	tected species or State endangered or threater rian buffer rule in effect ary Nursery Area (PNA) ed property of Coastal Management Area of Environmenta am with a NCDWQ classification of SA or supple	sors is apparent. Consider departure f ide, but are not limited to the following. er dams, dikes, berms, ponds, etc.) bles: discharges containing obvious pollu) insect damage, disease, storm damage ar-cutting, exotics, etc.) ted? ⊠Yes □No If Yes, check all that hed species	itants, presence of nearby septic , salt intrusion, etc.) It apply to the assessment area.
	Designated I	ICNHP reference community d)-listed stream or a tributary to a 303(d)-listed		
What	type of natural	stream is associated with the wetland, if any	/? (check all that apply)	
	Blackwater		- (
\boxtimes	Brownwater			
		check one of the following boxes)	🗌 Wind 🔲 Both	
	,	3 , <u> </u>		
is the	assessment ar	ea on a coastal island? 🔲 Yes 🛛 No		
Is the	assessment ar	ea's surface water storage capacity or durat	ion substantially altered by beaver?	🗌 Yes 🛛 No
		t area experience overbank flooding during		⊠ No
1. Gr	ound Surface C	ondition/Vegetation Condition – assessmen	t area condition metric	
ass	sessment area. ea based on evid	ch column. Consider alteration to the ground a Compare to reference wetland if applicable (see lence an effect.		
		Not severely altered		
		Severely altered over a majority of the assessn sedimentation, fire-plow lanes, skidder tracks, alteration examples: mechanical disturbance, h diversity [if appropriate], hydrologic alteration)	bedding, fill, soil compaction, obvious	pollutants) (vegetation structure
2. Su	rface and Sub-	Surface Storage Capacity and Duration – as	sessment area condition metric	
Co	nsider both incr ep is expected to rf Sub	ch column. Consider surface storage capacity ease and decrease in hydrology. A ditch \leq 1 for affect both surface and sub-surface water. Co Water storage capacity and duration are not alt	bot deep is considered to affect surface onsider tidal flooding regime, if applicabl	water only, while a ditch > 1 foot
	B □B C □C	Water storage capacity or duration are altered, Water storage capacity or duration are substan (examples: draining, flooding, soil compaction,	but not substantially (typically, not suffic tially altered (typically, alteration sufficie filling, excessive sedimentation, underg	ent to result in vegetation change) round utility lines).
3. Wa	ater Storage/Su	rface Relief – assessment area/wetland type	condition metric (skip for all marshe	es)
Ch	eck a box in ea AA WT	ch column. Select the appropriate storage for	the assessment area (AA) and the wetl	and type (WT).
3a.	A □A □B □B □C □C ☑D ☑D	Majority of wetland with depressions able to po Majority of wetland with depressions able to po Majority of wetland with depressions able to po Depressions able to pond water < 3 inches dee	nd water 6 inches to 1 foot deep nd water 3 to 6 inches deep	
		that maximum depth of inundation is greater th	0.0	

3D.

 \square A Evidence that maximum depth of inundation is greater than 2 feet \square B Evidence that maximum depth of inundation is between 1 and 2 feet \square C Evidence that maximum depth of inundation is less than 1 foot

Soil Texture/Structure – assessment area condition metric (skip for all marshes) 4.

Check a box from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. Make soil observations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional indicators

maioatoro.	
4a. 🔲 A	Sandy soil
⊠В	Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres)
□C	Loamy or clayey soils not exhibiting redoximorphic features
D	Loamy or clayey gleyed soil
ΠE	Histosol or histic epipedon
4b. 🖾 A	Soil ribbon < 1 inch
ПВ	Soil ribbon ≥ 1 inch

4c. 🖾 A No peat or muck presence

⊡в A peat or muck presence

Discharge into Wetland - opportunity metric 5.

Check a box in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples of sub-surface discharges include presence of nearby septic tank, underground storage tank (UST), etc. Sub

- Surf A
 - Little or no evidence of pollutants or discharges entering the assessment area ⊠Α
- ⊠в ⊡в Noticeable evidence of pollutants or discharges entering the wetland and stressing, but not overwhelming the treatment capacity of the assessment area
- □С ПС Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)

Land Use - opportunity metric (skip for non-riparian wetlands) 6

Check all that apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining to assessment area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M), and within 2 miles and within the watershed draining to the assessment area (2M).

WS 5M 2M ΠA ΠA ΠA > 10% impervious surfaces ⊡в ⊟в ⊟в Confined animal operations (or other local, concentrated source of pollutants ⊠c ⊠C ⊠C ≥ 20% coverage of pasture ØD ΠD ΔD \geq 20% coverage of agricultural land (regularly plowed land) ΠE E E ≥ 20% coverage of maintained grass/herb ĽĴF F F ≥ 20% coverage of clear-cut land G □G □G Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed or hydrologic alterations that prevent drainage and/or overbank flow from affecting the assessment area

Wetland Acting as Vegetated Buffer - assessment area/wetland complex condition metric (skip for non-riparian wetlands) 7.

- Is assessment area within 50 feet of a tributary or other open water? 7a.
 - □No XYes If Yes, continue to 7b. If No, skip to Metric 8.

Wetland buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.

- How much of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
 - ≥ 50 feet ΠA

7c.

- From 30 to < 50 feet
- From 15 to < 30 feet
- ΔD From 5 to < 15 feet
- < 5 feet or buffer bypassed by ditches ΠE
- Tributary width. If the tributary is anastomosed, combine widths of channels/braids for a total width.
- $\boxtimes \le 15$ -feet wide $\square > 15$ -feet wide \square Other open water (no tributary present)
- 7d. Do roots of assessment area vegetation extend into the bank of the tributary/open water? ∐Yes ⊠No
- 7e. Is stream or other open water sheltered or exposed? Sheltered – adjacent open water with width < 2500 feet and no regular boat traffic. Exposed – adjacent open water with width ≥ 2500 feet or regular boat traffic.
- Wetland Width at the Assessment Area wetland type/wetland complex condition metric (evaluate WT for all marshes and 8 Estuarine Woody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest only)

Check a box in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and the wetland complex at the assessment area (WC). See User Manual for WT and WC boundaries.

WT WC ΠA ΠA ≥ 100 feet Πв ΠВ From 80 to < 100 feet □с □с From 50 to < 80 feet From 40 to < 50 feet D D E E From 30 to < 40 feet ΠF From 15 to < 30 feet F G ΠG From 5 to < 15 feet ⊟н ΠН < 5 feet

9. Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)

Answer for assessment area dominant landform.

- Evidence of short-duration inundation (< 7 consecutive days) ΠA
- ⊠B □C Evidence of saturation, without evidence of inundation
 - Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)

10. Indicators of Deposition - assessment area condition metric (skip for non-riparian wetlands and all marshes)

- Consider recent deposition only (no plant growth since deposition).
- ⊠A □B Sediment deposition is not excessive, but at approximately natural levels.
 - Sediment deposition is excessive, but not overwhelming the wetland.
- Пс Sediment deposition is excessive and is overwhelming the wetland.

11. Wetland Size - wetland type/wetland complex condition metric

Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT WC

FW (if applicable) ≥ 500 acres

A

□В

٦J

⊠κ

⊠κ

- ΠA A □В □В From 100 to < 500 acres □С From 50 to < 100 acres
- D From 25 to < 50 acres
- ΠE ΠE ΠE From 10 to < 25 acres
- ΠF ΠF ΠF From 5 to < 10 acres
- ΠG ΠG ΠG From 1 to < 5 acres
- From 0.5 to < 1 acre ШΗ ШН ШН
 - From 0.1 to < 0.5 acre
 - ΠJ ΠJ From 0.01 to < 0.1 acre
 - ⊠κ < 0.01 acre or assessment area is clear-cut

12. Wetland Intactness - wetland type condition metric (evaluate for Pocosins only)

- Πа Pocosin is the full extent ($\geq 90\%$) of its natural landscape size.
- ΠВ Pocosin type is < 90% of the full extent of its natural landscape size.

13. Connectivity to Other Natural Areas - landscape condition metric

13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide.

Well	Loosely	
ΠA		≥ 500 acres
В	⊠В	From 100 to < 500 acres
□С	C	From 50 to < 100 acres
⊠D	D	From 10 to < 50 acres
ΠE	ΠE	< 10 acres
□F	□F	Wetland type has a poor or no connection to other natural habitats

13b. Evaluate for marshes only.

Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands. Yes No

14. Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)

May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C."

A	0
В	1 to 4

⊠c 5 to 8

15. Vegetative Composition - assessment area condition metric (skip for all marshes and Pine Flat)

- Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate ΠA species, with exotic plants absent or sparse within the assessment area.
- ⊡В Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata.
- ⊠C Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of noncharacteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.

16. Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)

- Πа Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics).
- В Vegetation diversity is low or has > 10% to 50% cover of exotics.
- ⊠c Vegetation is dominated by exotic species (> 50 % cover of exotics).

17. Vegetative Structure – assessment area/wetland type condition metric

- 17a. Is vegetation present? If Yes, continue to 17b. If No, skip to Metric 18. ⊠Yes □No
- 17b. Evaluate percent coverage of assessment area vegetation for all marshes only. Skip to 17c for non-marsh wetlands. ≥ 25% coverage of vegetation A ⊡в
 - < 25% coverage of vegetation
- 17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.

2	AA	WT '	
Canopy	∐A	⊟A	Canopy closed, or nearly closed, with natural gaps associated with natural processes
	⊟B	⊟B	Canopy present, but opened more than natural gaps
	⊠C	⊠C	Canopy sparse or absent
Mid-Story	□A	□A	Dense mid-story/sapling layer
	□B	□B	Moderate density mid-story/sapling layer
	⊠C	⊠C	Mid-story/sapling layer sparse or absent
Shrub	□A	□A	Dense shrub layer
	⊠B	⊠B	Moderate density shrub layer
	□C	□C	Shrub layer sparse or absent
Herb	⊠A	⊠A	Dense herb layer
	□B	□B	Moderate density herb layer

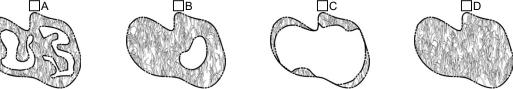
ШC □с Herb layer sparse or absent

18. Snags - wetland type condition metric (skip for all marshes)

Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability). ⊠в Not A

19. Diameter Class Distribution – wetland type condition metric (skip for all marshes)

- Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are present.
- Πв . Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH.
- ⊠С Majority of canopy trees are < 6 inches DBH or no trees.


20. Large Woody Debris – wetland type condition metric (skip for all marshes)

Include both natural debris and man-placed natural debris.

ΠA Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability). ⊠в Not A

21. Vegetation/Open Water Dispersion – wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)

Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.

22. Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)

Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.

- Overbank and overland flow are not severely altered in the assessment area. A
- ΠВ Overbank flow is severely altered in the assessment area.
- ⊠c Overland flow is severely altered in the assessment area.
- D Both overbank and overland flow are severely altered in the assessment area.

Notes

Wetland is located in an agricultural field primarlily used for hay production.

NC WAM Wetland Rating Sheet Accompanies User Manual Version 5.0

Wetland Site Name Wetland C	Date of Assessment	4/1/20	
Wetland Type Seep	Assessor Name/Organization	Jordan He	essler/WEI
Notes on Field Assessment Form (Y/N)		-	NO
Presence of regulatory considerations (Y/N)		-	NO
Wetland is intensively managed (Y/N)		-	YES
Assessment area is located within 50 feet of a natural tri	outary or other open water (Y/N)	-	YES
Assessment area is substantially altered by beaver (Y/N)	-	NO
Assessment area experiences overbank flooding during	normal rainfall conditions (Y/N)	-	NO
Assessment area is on a coastal island (Y/N)		-	NO

Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention Sub-surface Storage and	Condition	NA
	Retention	Condition	NA
Water Quality	Pathogen Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
	Particulate Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
	Soluble Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
	Physical Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat	Physical Structure	Condition	LOW
	Landscape Patch Structure	Condition	LOW
	Vegetation Composition	Condition	LOW
Function Rating Summa	ary		
Function		Metrics	Rating
Hydrology		Condition	LOW
Water Quality		Condition	LOW
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat		Condition	LOW

Sub-function Rating Summary

Overall Wetland Rating LOW

NC WAM FIELD ASSESSMENT FORM Accompanies User Manual Version 5.0

		Accompanies		
05	ACE AID #	Corportor Pottors Milization Oil-	NCDWR#	4/1/2020
	Project Nar	· · · · · · · · · · · · · · · · · · ·	Date of Evaluation	4/1/2020
A	oplicant/Owner Nar		Wetland Site Name	Wetland F
	Wetland Ty		Assessor Name/Organization	Jordan Hessler/ WEI
	Level III Ecoregi		Nearest Named Water Body	Beaverdam Creek
	River Bas		USGS 8-Digit Catalogue Unit	03050102
	Cour	nty Gaston	NCDWR Region	Mooresville
	🗌 Yes 🛛 I	No Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees)	35.408492/-81.259752
Ple rec	idence of stresson ease circle and/or ment past (for instan • Hydrological • Surface and tanks, under • Signs of veg • Habitat/plan the assessment an gulatory Considen Anadromous Federally pro NCDWR ripa Abuts a Prin Publicly own N.C. Division	rs affecting the assessment area (may not nake note on the last page if evidence of sice, within 10 years). Noteworthy stressors modifications (examples: ditches, dams, b sub-surface discharges into the wetland (ex ground storage tanks (USTs), hog lagoons, etation stress (examples: vegetation morta t community alteration (examples: mowing, rea intensively managed? ☑ Yes ☑ rations - Were regulatory considerations ev is fish betected species or State endangered or threa arian buffer rule in effect mary Nursery Area (PNA) ed property n of Coastal Management Area of Environm	bt be within the assessment area) stressors is apparent. Consider departure f include, but are not limited to the following. weaver dams, dikes, berms, ponds, etc.) (amples: discharges containing obvious pollu- , etc.) lity, insect damage, disease, storm damage clear-cutting, exotics, etc.)] No raluated? ⊠Yes □No If Yes, check all the eatened species	rom reference, if appropriate, in utants, presence of nearby septic , salt intrusion, etc.) at apply to the assessment area.
	Designated	(d)-listed stream or a tributary to a 303(d)-list		5 Hout
Wr 	Blackwater Brownwater	stream is associated with the wetland, if , check one of the following boxes)		
ls t	the assessment a	r ea on a coastal island? 🔲 Yes 🛛 🛛	No	
1			westion out of a still a literary but he area 2	
		ea's surface water storage capacity or d		☐ Yes ⊠ No
Do	es the assessmer	it area experience overbank flooding dur	ring normal rainfall conditions? 🛛 Yes	□ No
1.	Ground Surface (Condition/Vegetation Condition – assess	ment area condition metric	
	Check a box in ea	ach column. Consider alteration to the gro Compare to reference wetland if applicable	und surface (GS) in the assessment area ar (see User Manual). If a reference is not ap	
		Not severely altered		
	B B	Severely altered over a majority of the assessedimentation, fire-plow lanes, skidder tra	essment area (ground surface alteration exa acks, bedding, fill, soil compaction, obvious ace, herbicides, salt intrusion [where appropr on)	pollutants) (vegetation structure
2.	Surface and Sub-	Surface Storage Capacity and Duration -	 assessment area condition metric 	
	Check a box in ea Consider both incr	Ach column. Consider surface storage capa ease and decrease in hydrology. A ditch ≤ o affect both surface and sub-surface water Water storage capacity and duration are no Water storage capacity or duration are alte Water storage capacity or duration are sub	acity and duration (Surf) and sub-surface sto 5 1 foot deep is considered to affect surface 7. Consider tidal flooding regime, if applicab ot altered. ered, but not substantially (typically, not suffice ostantially altered (typically, alteration sufficie	water only, while a ditch > 1 foot le. cient to change vegetation). ent to result in vegetation change)
		(examples: draining, flooding, soil compact	tion, filling, excessive sedimentation, underg	round utility lines).
3.	Water Storage/Su	Inface Relief – assessment area/wetland	type condition metric (skip for all marshe	es)
	Check a box in ea		e for the assessment area (AA) and the wet	
	AA WT 3a. \square A \square A \square B \square B \square C \square C \blacksquare D \blacksquare D	Majority of wetland with depressions able t Majority of wetland with depressions able t Majority of wetland with depressions able t Depressions able to pond water < 3 inches	o pond water 6 inches to 1 foot deep o pond water 3 to 6 inches deep	
	3b 🗍 A Evidence	e that maximum depth of inundation is great	er than 2 feet	

 \square B Evidence that maximum depth of inundation is between 1 and 2 feet \square C Evidence that maximum depth of inundation is less than 1 foot

Soil Texture/Structure – assessment area condition metric (skip for all marshes) 4.

Check a box from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. Make soil observations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional indicators

-	4a. 🛛 A	Sandy soil
	⊠B ⊡C	Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres) Loamy or clayey soils not exhibiting redoximorphic features
		Loamy or clayey gleyed soil Histosol or histic epipedon
4	4b. ⊠A □B	Soil ribbon < 1 inch Soil ribbon ≥ 1 inch

4c. 🖾 A No peat or muck presence

ШΒ A peat or muck presence

Discharge into Wetland - opportunity metric 5.

Check a box in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples of sub-surface discharges include presence of nearby septic tank, underground storage tank (UST), etc. Sub

- Surf A
 - Little or no evidence of pollutants or discharges entering the assessment area $\boxtimes \mathsf{A}$
- ⊠в ⊡в Noticeable evidence of pollutants or discharges entering the wetland and stressing, but not overwhelming the treatment capacity of the assessment area
- □С ПС Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)

Land Use - opportunity metric (skip for non-riparian wetlands) 6

Check all that apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining to assessment area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M), and within 2 miles and within the watershed draining to the assessment area (2M).

WS 5M 2M ΠA ΠA ΠA > 10% impervious surfaces ⊡в ⊟в ⊟в Confined animal operations (or other local, concentrated source of pollutants ⊠c ⊠C ⊠C ≥ 20% coverage of pasture ØD ΠD ΔD \geq 20% coverage of agricultural land (regularly plowed land) ΠE E E ≥ 20% coverage of maintained grass/herb ĽĴF ⊡F F ≥ 20% coverage of clear-cut land G □G G Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed or hydrologic alterations that prevent drainage and/or overbank flow from affecting the assessment area

Wetland Acting as Vegetated Buffer - assessment area/wetland complex condition metric (skip for non-riparian wetlands) 7.

- Is assessment area within 50 feet of a tributary or other open water? 7a.
 - □No XYes If Yes, continue to 7b. If No, skip to Metric 8.

Wetland buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.

- How much of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
 - ≥ 50 feet ΠA

7c.

- From 30 to < 50 feet
- From 15 to < 30 feet
- ΔD From 5 to < 15 feet
- < 5 feet or buffer bypassed by ditches ΠE
- Tributary width. If the tributary is anastomosed, combine widths of channels/braids for a total width.
- $\boxtimes \le 15$ -feet wide $\square > 15$ -feet wide \square Other open water (no tributary present)
- 7d. Do roots of assessment area vegetation extend into the bank of the tributary/open water? ∐Yes ⊠No
- 7e. Is stream or other open water sheltered or exposed? Sheltered – adjacent open water with width < 2500 feet and no regular boat traffic. Exposed – adjacent open water with width ≥ 2500 feet or regular boat traffic.
- Wetland Width at the Assessment Area wetland type/wetland complex condition metric (evaluate WT for all marshes and 8 Estuarine Woody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest only)

Check a box in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and the wetland complex at the assessment area (WC). See User Manual for WT and WC boundaries.

WT WC ΠA ΠA ≥ 100 feet Πв ΠВ From 80 to < 100 feet □с □с From 50 to < 80 feet From 40 to < 50 feet D D E E From 30 to < 40 feet From 15 to < 30 feet F ΠF G ΠG From 5 to < 15 feet ⊟н ΠН < 5 feet

9. Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)

Answer for assessment area dominant landform.

- Evidence of short-duration inundation (< 7 consecutive days) ΠA
- ⊠B □C Evidence of saturation, without evidence of inundation
 - Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)

10. Indicators of Deposition - assessment area condition metric (skip for non-riparian wetlands and all marshes)

- Consider recent deposition only (no plant growth since deposition).
- ⊠A □B Sediment deposition is not excessive, but at approximately natural levels.
 - Sediment deposition is excessive, but not overwhelming the wetland.
- Пс Sediment deposition is excessive and is overwhelming the wetland.

11. Wetland Size - wetland type/wetland complex condition metric

Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT WC

FW (if applicable) ≥ 500 acres

A

□В

٦J

⊠κ

⊠κ

- ΠA A □В □В From 100 to < 500 acres □С From 50 to < 100 acres
- D From 25 to < 50 acres
- ΠE ΠE ΠE From 10 to < 25 acres
 - ΠF ΠF From 5 to < 10 acres
- ΠF ΠG ΠG ΠG From 1 to < 5 acres
- From 0.5 to < 1 acre ШΗ ШН ШН
 - From 0.1 to < 0.5 acre
 - ΠJ ΠJ From 0.01 to < 0.1 acre
 - ⊠κ < 0.01 acre or assessment area is clear-cut

12. Wetland Intactness - wetland type condition metric (evaluate for Pocosins only)

- Πа Pocosin is the full extent ($\geq 90\%$) of its natural landscape size.
- ΠВ Pocosin type is < 90% of the full extent of its natural landscape size.

13. Connectivity to Other Natural Areas - landscape condition metric

13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide.

Well	Loosely	
ΠA		≥ 500 acres
□В	⊠В	From 100 to < 500 acres
□c	□C	From 50 to < 100 acres
ΔD	D	From 10 to < 50 acres
ΠE	ΠE	< 10 acres
□F	□F	Wetland type has a poor or no connection to other natural habitats

13b. Evaluate for marshes only.

Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands. Yes No

14. Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)

May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C."

A	0
В	1 to 4

⊠C 5 to 8

15. Vegetative Composition - assessment area condition metric (skip for all marshes and Pine Flat)

- Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate ΠA species, with exotic plants absent or sparse within the assessment area.
- ⊡В Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata.
- ⊠C Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of noncharacteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.

16. Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)

- Πа Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics).
- Vegetation diversity is low or has > 10% to 50% cover of exotics. ⊠В
- □с Vegetation is dominated by exotic species (> 50 % cover of exotics).

17. Vegetative Structure – assessment area/wetland type condition metric

- 17a. Is vegetation present? If Yes, continue to 17b. If No, skip to Metric 18. ⊠Yes □No
- 17b. Evaluate percent coverage of assessment area vegetation for all marshes only. Skip to 17c for non-marsh wetlands. ≥ 25% coverage of vegetation A ⊡в
 - < 25% coverage of vegetation
- 17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.

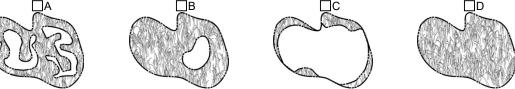
/ Canopy	AA □A □B ⊠C	WT □A □B ⊠C	Canopy closed, or nearly closed, with natural gaps associated with natural processes Canopy present, but opened more than natural gaps Canopy sparse or absent
Mid-Story	⊟A	□A	Dense mid-story/sapling layer
	⊟B	□B	Moderate density mid-story/sapling layer
	⊠C	⊠C	Mid-story/sapling layer sparse or absent
Shrub	□A	□A	Dense shrub layer
	□B	□B	Moderate density shrub layer
	⊠C	⊠C	Shrub layer sparse or absent
Herb	⊠A	⊠A	Dense herb layer
	□B	⊟B	Moderate density herb layer
	□C	⊟C	Herb layer sparse or absent

18. Snags - wetland type condition metric (skip for all marshes)

Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability). ⊠в Not A

19. Diameter Class Distribution – wetland type condition metric (skip for all marshes)

- Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are present.
- Πв . Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH.
- ⊠С Majority of canopy trees are < 6 inches DBH or no trees.


20. Large Woody Debris – wetland type condition metric (skip for all marshes)

Include both natural debris and man-placed natural debris.

ΠA Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability). ⊠в Not A

21. Vegetation/Open Water Dispersion – wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)

Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.

22. Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)

Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.

Overbank and overland flow are not severely altered in the assessment area. A

- ΠВ Overbank flow is severely altered in the assessment area.
- ⊠c Overland flow is severely altered in the assessment area.
- D Both overbank and overland flow are severely altered in the assessment area.

Notes

Wetland area is located in an agricultural field primarily used for hay production.

NC WAM Wetland Rating Sheet Accompanies User Manual Version 5.0

Wetland Site Name Wetland F	Date of Assessment	4/1/20
Wetland Type <u>Headwater Forest</u>	Assessor Name/Organization	Jordan Hessler/WEI
Notes on Field Assessment Form (Y/N)		YES
Presence of regulatory considerations (Y/N)		NO
Wetland is intensively managed (Y/N)		YES
Assessment area is located within 50 feet of a natural trib	utary or other open water (Y/N)	YES
Assessment area is substantially altered by beaver (Y/N)		NO
Assessment area experiences overbank flooding during n	ormal rainfall conditions (Y/N)	YES
Assessment area is on a coastal island (Y/N)		NO

Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention Sub-surface Storage and	Condition	LOW
	Retention	Condition	HIGH
Water Quality	Pathogen Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
	Particulate Change	Condition	LOW
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
	Soluble Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Physical Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat	Physical Structure	Condition	LOW
	Landscape Patch Structure	Condition	LOW
	Vegetation Composition	Condition	LOW
unction Rating Summary			
Function		Metrics	Rating
Hydrology		Condition	MEDIUM
Water Quality		Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
Habitat		Condition	LOW

Sub-function Rating Summary

NC WAM FIELD ASSESSMENT FORM ning Haar Manual Varaian E O

110	SACE AID	#	Accompa	NCDWR#	
08		# oject Nam	e Carpenter Bottom Mitigation Site		4/1/2020
Δ	pplicant/O				Wetland G
		etland Typ		Assessor Name/Organization	Jordan Hessler/ WEI
		l Ecoregio		Nearest Named Water Body	Beaverdam Creek
		River Basi		USGS 8-Digit Catalogue Unit	03050102
	1	Count		NCDWR Region	Mooresville
	🗌 Ye	_		Latitude/Longitude (deci-degrees)	35.408871/-81.259752
_			· · · · · · · · · · · · · · · · · · ·		
Ple rec	ease circle cent past (• Hyd • Sur tan • Sig • Hal the asses • gulatory (And Fed NC Abu Pul	and/or m for instance drological face and s ks, underg ns of vege bitat/plant sment are Considera dadromous derally pro DWR ripa uts a Prim bilicly owne	ake note on the last page if evidence, within 10 years). Noteworthy stress nodifications (examples: ditches, da ub-surface discharges into the wetlau round storage tanks (USTs), hog lag tation stress (examples: vegetation community alteration (examples: mo a intensively managed? Yes tions - Were regulatory consideration fish ected species or State endangered of ian buffer rule in effect ary Nursery Area (PNA) d property	mortality, insect damage, disease, storm damage owing, clear-cutting, exotics, etc.) s □ No ons evaluated? ⊠Yes □No If Yes, check all tha	utants, presence of nearby septic , salt intrusion, etc.)
	Abı Des	uts a strea signated N		A or supplemental classifications of HQW, ORW, o	or Trout
W		f natural s ckwater	tream is associated with the wetla	and, if any? (check all that apply)	
	Bro	wnwater	check one of the following boxes)	🗌 Lunar 🔲 Wind 🔲 Both	
ls	the asses	sment ar	a on a coastal island? 🗌 Yes	🖂 No	
ls	the asses	sment are	a's surface water storage capacity	y or duration substantially altered by beaver?	🗌 Yes 🛛 No
				g during normal rainfall conditions?	-
1.	Ground S	Surface C	ondition/Vegetation Condition – as	ssessment area condition metric	
	assessme area base	ent area.		e ground surface (GS) in the assessment area ar icable (see User Manual). If a reference is not ap	
	⊟A ⊠B	⊠В		e assessment area (ground surface alteration exa	
			alteration examples: mechanical dist liversity [if appropriate], hydrologic a	7	
2.	Surface a	and Sub-S	urface Storage Capacity and Dura	tion – assessment area condition metric	
	Consider deep is e Surf A	both incre xpected to Sub □A	ase and decrease in hydrology. A c	e capacity and duration (Surf) and sub-surface sto litch ≤ 1 foot deep is considered to affect surface water. Consider tidal flooding regime, if applicab are not altered.	water only, while a ditch > 1 foot
		⊠B □C	Nater storage capacity or duration an Nater storage capacity or duration an	re altered, but not substantially (typically, not suffice re substantially altered (typically, alteration sufficient mpaction, filling, excessive sedimentation, underg	ent to result in vegetation change)
3.	Water St	orage/Su	face Relief – assessment area/wet	land type condition metric (skip for all marshe	es)
	Check a AA		ch column . Select the appropriate s	torage for the assessment area (AA) and the wet	land type (WT).
	3a. □A ⊠B □C	⊟A ⊠B ⊟C		able to pond water 6 inches to 1 foot deep able to pond water 3 to 6 inches deep	
	3b ⊟A	Fvidence	that maximum depth of inundation is	greater than 2 feet	

B Evidence that maximum depth of inundation is between 1 and 2 feet C Evidence that maximum depth of inundation is less than 1 foot

Soil Texture/Structure – assessment area condition metric (skip for all marshes) 4.

Check a box from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. Make soil observations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional indicators

-	4a. □A ⊠B	Sandy soil
		Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres) Loamy or clayey soils not exhibiting redoximorphic features
	□D □E	Loamy or clayey gleyed soil Histosol or histic epipedon
4	4b. ⊠A □B	Soil ribbon < 1 inch Soil ribbon ≥ 1 inch

4c. 🖾 A No peat or muck presence

⊡в A peat or muck presence

Discharge into Wetland - opportunity metric 5.

Check a box in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples of sub-surface discharges include presence of nearby septic tank, underground storage tank (UST), etc. Sub

- Surf A
 - Little or no evidence of pollutants or discharges entering the assessment area $\boxtimes \mathsf{A}$
- ⊠в ⊡в Noticeable evidence of pollutants or discharges entering the wetland and stressing, but not overwhelming the treatment capacity of the assessment area
- □С ПС Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)

Land Use - opportunity metric (skip for non-riparian wetlands) 6

Check all that apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining to assessment area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M), and within 2 miles and within the watershed draining to the assessment area (2M).

WS 5M 2M ΠA ΠA ΠA > 10% impervious surfaces ⊡в ⊟в ⊟в Confined animal operations (or other local, concentrated source of pollutants ⊠c ⊠C ⊠C ≥ 20% coverage of pasture ΠD ΠD ΔD \geq 20% coverage of agricultural land (regularly plowed land) ΠE E E ≥ 20% coverage of maintained grass/herb ĽĴF ⊡F F ≥ 20% coverage of clear-cut land G □G G Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed or hydrologic alterations that prevent drainage and/or overbank flow from affecting the assessment area

Wetland Acting as Vegetated Buffer - assessment area/wetland complex condition metric (skip for non-riparian wetlands) 7.

Is assessment area within 50 feet of a tributary or other open water? 7a. TYes ΠNο If Yes, continue to 7b. If No, skip to Metric 8.

Wetland buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.

- How much of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
 - ≥ 50 feet ΠA

7c.

- From 30 to < 50 feet
- From 15 to < 30 feet
- ΠD From 5 to < 15 feet
- < 5 feet or buffer bypassed by ditches ΠE
- Tributary width. If the tributary is anastomosed, combine widths of channels/braids for a total width.
- $\boxtimes \le 15$ -feet wide $\square > 15$ -feet wide \square Other open water (no tributary present)
- 7d. Do roots of assessment area vegetation extend into the bank of the tributary/open water? ∐Yes ⊠No
- 7e. Is stream or other open water sheltered or exposed? Sheltered – adjacent open water with width < 2500 feet and no regular boat traffic. Exposed – adjacent open water with width \geq 2500 feet or regular boat traffic.
- Wetland Width at the Assessment Area wetland type/wetland complex condition metric (evaluate WT for all marshes and 8 Estuarine Woody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest only)

Check a box in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and the wetland complex at the assessment area (WC). See User Manual for WT and WC boundaries.

WT WC ΠA ΠA ≥ 100 feet Πв ΠВ From 80 to < 100 feet □с □с From 50 to < 80 feet From 40 to < 50 feet D D E E From 30 to < 40 feet ΠF From 15 to < 30 feet F ⊠G G From 5 to < 15 feet ΠН ШΗ < 5 feet

9. Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)

Answer for assessment area dominant landform.

- Evidence of short-duration inundation (< 7 consecutive days) ⊠Α
- ⊡в Evidence of saturation, without evidence of inundation
- □c Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)

10. Indicators of Deposition - assessment area condition metric (skip for non-riparian wetlands and all marshes)

- Consider recent deposition only (no plant growth since deposition).
- ⊠A □B Sediment deposition is not excessive, but at approximately natural levels.
 - Sediment deposition is excessive, but not overwhelming the wetland.
- Пс Sediment deposition is excessive and is overwhelming the wetland.

11. Wetland Size - wetland type/wetland complex condition metric

Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT WC

FW (if applicable) ≥ 500 acres

A

⊡в

С

J

⊠κ

⊠κ

- ΔA A □В ⊡В From 100 to < 500 acres □С From 50 to < 100 acres D From 25 to < 50 acres
- D ΠE From 10 to < 25 acres
 - ΠE ΠE
- ΠF ΠF ΠF From 5 to < 10 acres
- ΠG ΠG ΠG From 1 to < 5 acres
- From 0.5 to < 1 acre ШΗ ШН ШН
 - From 0.1 to < 0.5 acre
 - ΠJ ΠJ From 0.01 to < 0.1 acre
 - ⊠κ < 0.01 acre or assessment area is clear-cut

12. Wetland Intactness - wetland type condition metric (evaluate for Pocosins only)

- Πа Pocosin is the full extent ($\geq 90\%$) of its natural landscape size.
- ΠВ Pocosin type is < 90% of the full extent of its natural landscape size.

13. Connectivity to Other Natural Areas - landscape condition metric

13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide.

Well	Loosely	
ΠA		≥ 500 acres
□В	⊠В	From 100 to < 500 acres
□с	□C	From 50 to < 100 acres
D	D	From 10 to < 50 acres
ΠE	ΠE	< 10 acres
⊠F	□F	Wetland type has a poor or no connection to other natural habitats

13b. Evaluate for marshes only.

Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands. Yes No

14. Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)

May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C."

A	0
В	1 to 4

⊠C 5 to 8

15. Vegetative Composition - assessment area condition metric (skip for all marshes and Pine Flat)

- Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate species, with exotic plants absent or sparse within the assessment area.
- ⊡В Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata.
- ⊠C Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of noncharacteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.

16. Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)

- Πа Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics).
- Vegetation diversity is low or has > 10% to 50% cover of exotics. ⊠В
- □с Vegetation is dominated by exotic species (> 50 % cover of exotics).

17. Vegetative Structure – assessment area/wetland type condition metric

- 17a. Is vegetation present? If Yes, continue to 17b. If No, skip to Metric 18. ⊠Yes □No
- 17b. Evaluate percent coverage of assessment area vegetation for all marshes only. Skip to 17c for non-marsh wetlands. ≥ 25% coverage of vegetation A ⊡в
 - < 25% coverage of vegetation
- 17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.

Canopy	AA □A □B ⊠C	WT □A □B ⊠C	Canopy closed, or nearly closed, with natural gaps associated with natural processes Canopy present, but opened more than natural gaps Canopy sparse or absent
Mid-Story	□A	□A	Dense mid-story/sapling layer
	□B	□B	Moderate density mid-story/sapling layer
	⊠C	⊠C	Mid-story/sapling layer sparse or absent
Shrub	□A	□A	Dense shrub layer
	□B	□B	Moderate density shrub layer
	⊠C	⊠C	Shrub layer sparse or absent
Herb	⊠A	⊠A	Dense herb layer
	□B	□B	Moderate density herb layer
	□C	□C	Herb layer sparse or absent

ШC □с

18. Snags - wetland type condition metric (skip for all marshes)

Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability). ⊠в Not A

19. Diameter Class Distribution – wetland type condition metric (skip for all marshes)

- Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are present.
- Πв . Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH.
- ⊠С Majority of canopy trees are < 6 inches DBH or no trees.

20. Large Woody Debris – wetland type condition metric (skip for all marshes)

Include both natural debris and man-placed natural debris.

ΠA Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability). ⊠в Not A

21. Vegetation/Open Water Dispersion – wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)

Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.

22. Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)

Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.

Overbank and overland flow are not severely altered in the assessment area. A

- ΠВ Overbank flow is severely altered in the assessment area.
- ⊠c Overland flow is severely altered in the assessment area.
- D Both overbank and overland flow are severely altered in the assessment area.

Notes

Wetland area is located in an agricultural field primarily used for hay production.

NC WAM Wetland Rating Sheet Accompanies User Manual Version 5.0

Wetland Site Name Wetland G	Date of Assessment	4/1/20		
Wetland Type <u>Headwater Forest</u>	Assessor Name/Organization	Jordan Hessler/WEI		
Notes on Field Assessment Form (Y/N)		YES		
Presence of regulatory considerations (Y/N)		NO		
Wetland is intensively managed (Y/N) YES				
Assessment area is located within 50 feet of a natural tributary or other open water (Y/N) NO				
Assessment area is substantially altered by beaver (Y/N) NO				
Assessment area experiences overbank flooding during normal rainfall conditions (Y/N) YES				
Assessment area is on a coastal island (Y/N)NO				

Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention Sub-surface Storage and	Condition	LOW
	Retention	Condition	HIGH
Water Quality	Pathogen Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
	Particulate Change	Condition	LOW
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
	Soluble Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Physical Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat	Physical Structure	Condition	LOW
	Landscape Patch Structure	Condition	LOW
	Vegetation Composition	Condition	LOW
Function Rating Summary			
Function		Metrics	Rating
Hydrology		Condition	MEDIUM
Water Quality		Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
Habitat		Condition	LOW

Sub-function Rating Summary

Overall Wetland Rating LOW

NC WAM FIELD ASSESSMENT FORM Accompanies User Manual Version 5.0

110		#	Accompa		
08	ACE AID	# oject Nam	Carpenter Bottom Mitigation Site	NCDWR# Date of Evaluation	4/1/2020
•	pplicant/O				Wetland H
		etland Typ			Jordan Hessler/ WEI
		l Ecoregio		Nearest Named Water Body	Beaverdam Creek
		River Basi		USGS 8-Digit Catalogue Unit	03050102
	I	Count		NCDWR Region	Mooresville
	🗌 Ye	_		Latitude/Longitude (deci-degrees)	35.409599/-81.259679
					00.400000/ 01.200010
Ple rec	ease circle cent past (f • Hyd • Sur tan • Sig • Hal the asses gulatory (Ana Fec NC Abu Put	and/or m for instance drological i face and s ks, underg ns of vege bitat/plant sment are Considera adromous derally pro DWR ripa uts a Prima bilicly owne	ake note on the last page if evidence, within 10 years). Noteworthy stree nodifications (examples: ditches, da ub-surface discharges into the wetla round storage tanks (USTs), hog lag tation stress (examples: vegetation community alteration (examples: mo a intensively managed? Yes tions - Were regulatory consideration ish ected species or State endangered ian buffer rule in effect rry Nursery Area (PNA) d property	mortality, insect damage, disease, storm damage owing, clear-cutting, exotics, etc.) s	utants, presence of nearby septic , salt intrusion, etc.)
	Abı Des	uts a strea signated N		A or supplemental classifications of HQW, ORW, o	or Trout
	Bla Bro	ckwater wnwater	tream is associated with the wetle check one of the following boxes)	and, if any? (check all that apply)	
ls '	the asses	sment are	a on a coastal island? 🔲 Yes	🖂 No	
			—	—	
				y or duration substantially altered by beaver?	🗌 Yes 🖾 No
Do	es the as	sessment	area experience overbank floodir	ng during normal rainfall conditions? 🛛 Yes	🗌 No
1.	Ground S	Surface C	ondition/Vegetation Condition – as	ssessment area condition metric	
	Check a assessme area base	box in ea ent area.(h column. Consider alteration to the	ne ground surface (GS) in the assessment area ar icable (see User Manual). If a reference is not app	
	A	∏A ⊠B	edimentation, fire-plow lanes, skide	e assessment area (ground surface alteration exa der tracks, bedding, fill, soil compaction, obvious turbance, herbicides, salt intrusion [where appropr literation)	pollutants) (vegetation structure
2.	Surface a	and Sub-S	urface Storage Capacity and Dura	ation – assessment area condition metric	
	Check a Consider deep is e Surf A B	box in ead both incre xpected to Sub A B B C	h column. Consider surface storag ase and decrease in hydrology. A c affect both surface and sub-surface Vater storage capacity and duration Vater storage capacity or duration a Vater storage capacity or duration a	e capacity and duration (Surf) and sub-surface sto ditch ≤ 1 foot deep is considered to affect surface water. Consider tidal flooding regime, if applicabl are not altered. re altered, but not substantially (typically, not suffice re substantially altered (typically, alteration sufficient	water only, while a ditch > 1 foot le. cient to change vegetation). ent to result in vegetation change)
			examples: draining, flooding, soil co	mpaction, filling, excessive sedimentation, underg	round utility lines).
3.	Water St	orage/Su	face Relief – assessment area/we	tland type condition metric (skip for all marshe	es)
	Check a	box in ea		storage for the assessment area (AA) and the wetl	•
	□C	□A ⊠B □C		able to pond water 6 inches to 1 foot deep able to pond water 3 to 6 inches deep	
			hat maximum depth of inundation is	•	

B Evidence that maximum depth of inundation is between 1 and 2 feet C Evidence that maximum depth of inundation is less than 1 foot

Soil Texture/Structure – assessment area condition metric (skip for all marshes) 4.

Check a box from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. Make soil observations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional indicators

-	4a. □A ⊠B	Sandy soil
		Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres) Loamy or clayey soils not exhibiting redoximorphic features
	□D □E	Loamy or clayey gleyed soil Histosol or histic epipedon
4	4b. ⊠A □B	Soil ribbon < 1 inch Soil ribbon ≥ 1 inch

4c. 🖾 A No peat or muck presence

⊡в A peat or muck presence

Discharge into Wetland - opportunity metric 5.

Check a box in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples of sub-surface discharges include presence of nearby septic tank, underground storage tank (UST), etc. Sub

- Surf A
 - Little or no evidence of pollutants or discharges entering the assessment area ⊠Α
- ⊠в ⊡в Noticeable evidence of pollutants or discharges entering the wetland and stressing, but not overwhelming the treatment capacity of the assessment area
- □С ПС Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)

Land Use - opportunity metric (skip for non-riparian wetlands) 6

Check all that apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining to assessment area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M), and within 2 miles and within the watershed draining to the assessment area (2M).

WS 5M 2M ΠA ΠA ΠA > 10% impervious surfaces ⊡в ⊟в ⊟в Confined animal operations (or other local, concentrated source of pollutants ⊠c ⊠C ⊠C ≥ 20% coverage of pasture ØD ΠD ΔD \geq 20% coverage of agricultural land (regularly plowed land) ΠE E E ≥ 20% coverage of maintained grass/herb ĽĴF ⊡F F ≥ 20% coverage of clear-cut land G □G G Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed or hydrologic alterations that prevent drainage and/or overbank flow from affecting the assessment area

Wetland Acting as Vegetated Buffer - assessment area/wetland complex condition metric (skip for non-riparian wetlands) 7.

Is assessment area within 50 feet of a tributary or other open water? 7a.

TYes ΠNο If Yes, continue to 7b. If No, skip to Metric 8.

Wetland buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.

- How much of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
 - ⊠Α ≥ 50 feet

7c.

- ⊟B □C From 30 to < 50 feet
- From 15 to < 30 feet
- ΠD From 5 to < 15 feet
- < 5 feet or buffer bypassed by ditches ΠE
- Tributary width. If the tributary is anastomosed, combine widths of channels/braids for a total width.
- $\boxtimes \le 15$ -feet wide $\square > 15$ -feet wide \square Other open water (no tributary present)
- 7d. Do roots of assessment area vegetation extend into the bank of the tributary/open water? ⊠Yes No
- 7e. Is stream or other open water sheltered or exposed? Sheltered – adjacent open water with width < 2500 feet and no regular boat traffic. Exposed – adjacent open water with width \geq 2500 feet or regular boat traffic.
- Wetland Width at the Assessment Area wetland type/wetland complex condition metric (evaluate WT for all marshes and 8 Estuarine Woody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest only)

Check a box in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and the wetland complex at the assessment area (WC). See User Manual for WT and WC boundaries.

WT WC ΠA ΠA ≥ 100 feet Πв ΠВ From 80 to < 100 feet □с □с From 50 to < 80 feet From 40 to < 50 feet D D E E From 30 to < 40 feet From 15 to < 30 feet F ΠF G ΠG From 5 to < 15 feet ⊟н ΠН < 5 feet

9. Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)

Answer for assessment area dominant landform.

- Evidence of short-duration inundation (< 7 consecutive days) ⊠Α
- ⊡в Evidence of saturation, without evidence of inundation
- □c Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)

10. Indicators of Deposition - assessment area condition metric (skip for non-riparian wetlands and all marshes)

- Consider recent deposition only (no plant growth since deposition).
- Sediment deposition is not excessive, but at approximately natural levels. ΠA
- ⊠в Sediment deposition is excessive, but not overwhelming the wetland.
- ПС Sediment deposition is excessive and is overwhelming the wetland.

11. Wetland Size - wetland type/wetland complex condition metric

Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT WC

FW (if applicable) ≥ 500 acres

A

⊡в

N

J

Πĸ

ПК

- ΔA A □В □В From 100 to < 500 acres □С From 50 to < 100 acres
- С D D From 25 to < 50 acres
- ΠE ΠE ΠE From 10 to < 25 acres
 - ΠF ΠF From 5 to < 10 acres
- ΠF ΠG ΠG ΠG From 1 to < 5 acres
- From 0.5 to < 1 acre ШΗ
 - ШН ШН Ī \boxtimes I From 0.1 to < 0.5 acre
 - ΠJ ΠJ From 0.01 to < 0.1 acre
 - ΠK < 0.01 acre or assessment area is clear-cut

12. Wetland Intactness - wetland type condition metric (evaluate for Pocosins only)

- Πа Pocosin is the full extent ($\geq 90\%$) of its natural landscape size.
- ΠВ Pocosin type is < 90% of the full extent of its natural landscape size.

13. Connectivity to Other Natural Areas - landscape condition metric

13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide.

Well	Loosely	
ΠA		≥ 500 acres
□В	⊠В	From 100 to < 500 acres
⊠C	□C	From 50 to < 100 acres
D	D	From 10 to < 50 acres
ΠE	ΠE	< 10 acres
□F	□F	Wetland type has a poor or no connection to other natural habitats

13b. Evaluate for marshes only.

Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands. Yes No

14. Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)

May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C."

A	0
⊲в	1 to 4

ПС 5 to 8

15. Vegetative Composition - assessment area condition metric (skip for all marshes and Pine Flat)

- Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate A species, with exotic plants absent or sparse within the assessment area.
- ⊡В Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata.
- ⊠C Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of noncharacteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.

16. Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)

- Πа Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics).
- Vegetation diversity is low or has > 10% to 50% cover of exotics. ⊠В
- Vegetation is dominated by exotic species (> 50 % cover of exotics). □с

17. Vegetative Structure – assessment area/wetland type condition metric

- 17a. Is vegetation present? If Yes, continue to 17b. If No, skip to Metric 18. ⊠Yes □No
- 17b. Evaluate percent coverage of assessment area vegetation for all marshes only. Skip to 17c for non-marsh wetlands. ≥ 25% coverage of vegetation A ⊡в
 - < 25% coverage of vegetation
- 17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.

	AA	WT .	
Canopy	□A	□A	Canopy closed, or nearly closed, with natural gaps associated with natural processes
	⊠B	⊠B	Canopy present, but opened more than natural gaps
	□C	□C	Canopy sparse or absent
Mid-Story	□A	□A	Dense mid-story/sapling layer
	⊠B	⊠B	Moderate density mid-story/sapling layer
	□C	□C	Mid-story/sapling layer sparse or absent
Shrub	□A	□A	Dense shrub layer
	⊠B	⊠B	Moderate density shrub layer
	□C	□C	Shrub layer sparse or absent
Herb	⊠A	⊠A	Dense herb layer
	□B	□B	Moderate density herb layer

ПС ПС Herb layer sparse or absent

18. Snags - wetland type condition metric (skip for all marshes)

Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability). ⊠в Not A

19. Diameter Class Distribution – wetland type condition metric (skip for all marshes)

- Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are present.
- ⊠В . Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH.
- ПС Majority of canopy trees are < 6 inches DBH or no trees.


20. Large Woody Debris – wetland type condition metric (skip for all marshes)

Include both natural debris and man-placed natural debris.

ΠA Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability). ⊠в Not A

21. Vegetation/Open Water Dispersion – wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)

Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.

22. Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)

Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.

Overbank and overland flow are not severely altered in the assessment area. A

- ΠВ Overbank flow is severely altered in the assessment area.
- ⊠c Overland flow is severely altered in the assessment area.

D Both overbank and overland flow are severely altered in the assessment area.

Notes

Livestock have full access to wetland area and have created ares of heavy trampling

NC WAM Wetland Rating Sheet Accompanies User Manual Version 5.0

Wetland Site Name Wetland H	Date of Assessment	4/1/20
Wetland Type Headwater Forest	Assessor Name/Organization	Jordan Hessler/WEI
Notes on Field Assessment Form (Y/N)		YES
Presence of regulatory considerations (Y/N) NO		
Wetland is intensively managed (Y/N) YES		
Assessment area is located within 50 feet of a natural tributary or other open water (Y/N)		
Assessment area is substantially altered by beaver (Y/N) NO		
Assessment area experiences overbank flooding during normal rainfall conditions (Y/N) YES		
Assessment area is on a coastal island (Y/N) NO		

Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention Sub-surface Storage and	Condition	LOW
	Retention	Condition	HIGH
Water Quality	Pathogen Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
	Particulate Change	Condition	LOW
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
	Soluble Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Physical Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat	Physical Structure	Condition	LOW
	Landscape Patch Structure	Condition	LOW
	Vegetation Composition	Condition	LOW
Function Rating Summary			
Function		Metrics	Rating
Hydrology		Condition	MEDIUM
Water Quality		Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
Habitat		Condition	LOW

Sub-function Rating Summary

Overall Wetland Rating LOW

NC WAM FIELD ASSESSMENT FORM Accompanies User Manual Version 5.0

USACE AID #	Accompanies		
Project	Name Carpontor Pottom Mitigation Site	NCDWR#	4/1/2020
-	iv	Date of Evaluation	4/1/2020
Applicant/Owner		Wetland Site Name	Wetland I
Wetland		Assessor Name/Organization	Jordan Hessler/ WEI
Level III Ecor	·	Nearest Named Water Body	Beaverdam Creek
	Basin Catawba	USGS 8-Digit Catalogue Unit	03050102
	county Gaston	NCDWR Region	Mooresville
	No Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees)	35.409577/-81.260181
Please circle and/ recent past (for ins • Hydrolog • Surface a tanks, ur • Signs of • Habitat/p Is the assessmen Regulatory Cons □ Anadrom □ Federally	iderations - Were regulatory considerations er nous fish / protected species or State endangered or thr riparian buffer rule in effect Primary Nursery Area (PNA) pwned property	stressors is apparent. Consider departure f include, but are not limited to the following. beaver dams, dikes, berms, ponds, etc.) xamples: discharges containing obvious pollu s, etc.) ality, insect damage, disease, storm damage t, clear-cutting, exotics, etc.) No valuated? Xes No If Yes, check all that eatened species	utants, presence of nearby septic , salt intrusion, etc.)
Abuts a s	sion of Coastal Management Area of Environn stream with a NCDWQ classification of SA or s ed NCNHP reference community 303(d)-listed stream or a tributary to a 303(d)-li	supplemental classifications of HQW, ORW, o	or Trout
What type of natu	iral stream is associated with the wetland, i	if any? (check all that apply)	
Blackwat			
Brownwa			
Tidal (if t	idal, check one of the following boxes) 🛛 🗌 L	unar 🔲 Wind 🔲 Both	
Is the assessmen	it area on a coastal island? ☐ Yes ⊠	No	
	t area's surface water storage capacity or o		🗌 Yes 🛛 No
Does the assess	nent area experience overbank flooding du	ring normal rainfall conditions?	🛛 No
	ce Condition/Vegetation Condition – asses		
assessment ar area based on GS VS	n each column. Consider alteration to the gro ea. Compare to reference wetland if applicable evidence an effect.		
	Not severely altered		
⊠в ⊠в	sedimentation, fire-plow lanes, skidder tr	sessment area (ground surface alteration exa acks, bedding, fill, soil compaction, obvious nce, herbicides, salt intrusion [where appropr ion)	pollutants) (vegetation structure
2. Surface and S	ub-Surface Storage Capacity and Duration	 assessment area condition metric 	
Check a box in Consider both deep is expect Surf Sub	n each column. Consider surface storage cap increase and decrease in hydrology. A ditch ed to affect both surface and sub-surface wate	bacity and duration (Surf) and sub-surface sto ≤ 1 foot deep is considered to affect surface r. Consider tidal flooding regime, if applicab	water only, while a ditch > 1 foot
□A □A □B ⊠B ⊠C □C	Water storage capacity or duration are su	not altered. ered, but not substantially (typically, not suffi bstantially altered (typically, alteration sufficie tion, filling, excessive sedimentation, underg	ent to result in vegetation change)
3. Water Storage	/Surface Relief – assessment area/wetland	type condition metric (skip for all marshe	es)
-	n each column. Select the appropriate storage		
AA WT 3a. □A □A	Majority of wetland with depressions able	to pond water > 1 deep	
	Majority of wetland with depressions able	to pond water 3 to 6 inches deep	
	Majority of wetland with depressions able	to pond water 3 to 6 inches deep	

 \square B Evidence that maximum depth of inundation is between 1 and 2 feet \square C Evidence that maximum depth of inundation is less than 1 foot

4. Soil Texture/Structure - assessment area condition metric (skip for all marshes)

Check a box from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. Make soil observations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional indicators.

maioatoro.	
4a. 🔲 A	Sandy soil
⊠В	Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres)
□C	Loamy or clayey soils not exhibiting redoximorphic features
D	Loamy or clayey gleved soil
Ē	Histosol or histic epipedon
4b. 🖾 A	Soil ribbon < 1 inch
	Soil ribbon ≥ 1 inch
_	

4c. $\square A$ No peat or muck presence

B A peat or muck presence

5. Discharge into Wetland – opportunity metric

Check a box in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples of sub-surface discharges include presence of nearby septic tank, underground storage tank (UST), etc.

- Surf □A □B
 - A Little or no evidence of pollutants or discharges entering the assessment area
 - B Noticeable evidence of pollutants or discharges entering the wetland and stressing, but not overwhelming the treatment capacity of the assessment area
- C C Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)

6. Land Use – opportunity metric (skip for non-riparian wetlands)

Check all that apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining to assessment area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M), and within 2 miles and within the watershed draining to the assessment area (2M).

WS 5M 2M ΠA ΠA ΠA > 10% impervious surfaces ⊡в ⊟в ⊟в Confined animal operations (or other local, concentrated source of pollutants ⊠c ⊠C ⊠C ≥ 20% coverage of pasture ΠD ΠD ΔD \geq 20% coverage of agricultural land (regularly plowed land) ΠE E E ≥ 20% coverage of maintained grass/herb ĽĴF ⊡F F ≥ 20% coverage of clear-cut land G □G □G Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed or hydrologic alterations that prevent drainage and/or overbank flow from affecting the assessment area

7. Wetland Acting as Vegetated Buffer - assessment area/wetland complex condition metric (skip for non-riparian wetlands)

- 7a. Is assessment area within 50 feet of a tributary or other open water?
 - \boxtimes Yes \square No If Yes, continue to 7b. If No, skip to Metric 8.

Wetland buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.

- 7b. How much of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
 - A ≥ 50 feet

7c.

- B From 30 to < 50 feet
- $\overrightarrow{\mathbf{D}}^{-}$ From 15 to < 30 feet
- D From 5 to < 15 feet
- E < 5 feet <u>or</u> buffer bypassed by ditches
- Tributary width. If the tributary is anastomosed, combine widths of channels/braids for a total width.
- $\boxtimes \le$ 15-feet wide $\square >$ 15-feet wide \square Other open water (no tributary present)
- 7d. Do roots of assessment area vegetation extend into the bank of the tributary/open water? ⊠Yes □No
- 7e. Is stream or other open water sheltered or exposed?
 ☑ Sheltered adjacent open water with width < 2500 feet and no regular boat traffic.
 ☑ Exposed adjacent open water with width ≥ 2500 feet or regular boat traffic.
- Wetland Width at the Assessment Area wetland type/wetland complex condition metric (evaluate WT for all marshes and Estuarine Woody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest only)

Check a box in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and the wetland complex at the assessment area (WC). See User Manual for WT and WC boundaries.

WT WC ΠA ΠA ≥ 100 feet Πв В From 80 to < 100 feet □с □с From 50 to < 80 feet From 40 to < 50 feet D ΔD E E From 30 to < 40 feet From 15 to < 30 feet F ΠF G ΠG From 5 to < 15 feet ⊟н ΠН < 5 feet

9. Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)

Answer for assessment area dominant landform.

- Evidence of short-duration inundation (< 7 consecutive days) ΠA
- ⊠B □C Evidence of saturation, without evidence of inundation
 - Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)

10. Indicators of Deposition - assessment area condition metric (skip for non-riparian wetlands and all marshes)

- Consider recent deposition only (no plant growth since deposition).
- Sediment deposition is not excessive, but at approximately natural levels. ΠA
- ⊠в Sediment deposition is excessive, but not overwhelming the wetland.
- ПС Sediment deposition is excessive and is overwhelming the wetland.

11. Wetland Size - wetland type/wetland complex condition metric

Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT WC

FW (if applicable) ≥ 500 acres

A

⊡в

N

J

Πĸ

ПК

- ΔA A □В □В From 100 to < 500 acres □С From 50 to < 100 acres
- D From 25 to < 50 acres
- ΠE ΠE ΠE From 10 to < 25 acres ΠF
 - ΠF ΠF From 5 to < 10 acres
- ΠG ΠG ΠG From 1 to < 5 acres
- From 0.5 to < 1 acre ШΗ ШН ШН
 - \boxtimes I From 0.1 to < 0.5 acre
 - ΠJ ΜJ From 0.01 to < 0.1 acre
 - ΠK < 0.01 acre or assessment area is clear-cut

12. Wetland Intactness - wetland type condition metric (evaluate for Pocosins only)

- Πа Pocosin is the full extent ($\geq 90\%$) of its natural landscape size.
- ΠВ Pocosin type is < 90% of the full extent of its natural landscape size.

13. Connectivity to Other Natural Areas - landscape condition metric

13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide.

Well	Loosely	
ΠA		≥ 500 acres
□В	⊠В	From 100 to < 500 acres
□c	□C	From 50 to < 100 acres
D	D	From 10 to < 50 acres
⊠E	ΠE	< 10 acres
□F	□F	Wetland type has a poor or no connection to other natural habitats

13b. Evaluate for marshes only.

Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands. Yes No

14. Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)

May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C."

A	0
В	1 to 4

⊠C 5 to 8

15. Vegetative Composition - assessment area condition metric (skip for all marshes and Pine Flat)

- Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate ΠA species, with exotic plants absent or sparse within the assessment area.
- ⊡В Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata.
- ⊠C Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of noncharacteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.

16. Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)

- Πа Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics).
- В Vegetation diversity is low or has > 10% to 50% cover of exotics.
- ⊠c Vegetation is dominated by exotic species (> 50 % cover of exotics).

17. Vegetative Structure – assessment area/wetland type condition metric

- 17a. Is vegetation present? If Yes, continue to 17b. If No, skip to Metric 18. ⊠Yes □No
- 17b. Evaluate percent coverage of assessment area vegetation for all marshes only. Skip to 17c for non-marsh wetlands. ≥ 25% coverage of vegetation A ⊡в
 - < 25% coverage of vegetation
- 17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.

	AA	WT .	
Canopy	□A	□A	Canopy closed, or nearly closed, with natural gaps associated with natural processes
	⊠B	⊠B	Canopy present, but opened more than natural gaps
	□C	□C	Canopy sparse or absent
Mid-Story	□A	□A	Dense mid-story/sapling layer
	⊠B	⊠B	Moderate density mid-story/sapling layer
	□C	□C	Mid-story/sapling layer sparse or absent
Shrub	□A	⊟A	Dense shrub layer
	□B	⊟B	Moderate density shrub layer
	⊠C	⊠C	Shrub layer sparse or absent
Herb	⊠A	⊠A	Dense herb layer
	□B	□B	Moderate density herb layer

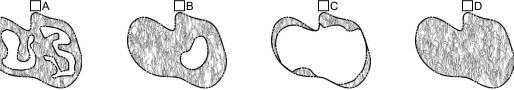
□C ПС Herb layer sparse or absent

18. Snags - wetland type condition metric (skip for all marshes)

Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability). ⊠в Not A

19. Diameter Class Distribution – wetland type condition metric (skip for all marshes)

- Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are present.
- ⊠В . Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH.
- ПС Majority of canopy trees are < 6 inches DBH or no trees.


20. Large Woody Debris – wetland type condition metric (skip for all marshes)

Include both natural debris and man-placed natural debris.

ΠA Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability). ⊠в Not A

21. Vegetation/Open Water Dispersion – wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)

Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.

22. Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)

Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.

- Overbank and overland flow are not severely altered in the assessment area. A
-]в Overbank flow is severely altered in the assessment area.
- □с Overland flow is severely altered in the assessment area.
- D Both overbank and overland flow are severely altered in the assessment area.

Notes

Wetland area exhibits highly trampled and wallow area from cattle. It also exhibits evidence manual manipulation likely from ditching.

NC WAM Wetland Rating Sheet Accompanies User Manual Version 5.0

Wetland Site Name Wetland I	Date of Assessment	4/1/20	
Wetland Type Headwater Forest	Assessor Name/Organization	Jordan H	essler/WEI
Notes on Field Assessment Form (Y/N)			YES
Presence of regulatory considerations (Y/N) NO			NO
Wetland is intensively managed (Y/N) YES			YES
Assessment area is located within 50 feet of a natural tributary or other open water (Y/N)			YES
Assessment area is substantially altered by beaver (Y/N) NO			NO
Assessment area experiences overbank flooding during normal rainfall conditions (Y/N) NO			NO
Assessment area is on a coastal island (Y/N) NO			NO

Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention Sub-surface Storage and	Condition	LOW
	Retention	Condition	HIGH
Water Quality	Pathogen Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Particulate Change	Condition	LOW
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
	Soluble Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Physical Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat	Physical Structure	Condition	LOW
	Landscape Patch Structure	Condition	LOW
	Vegetation Composition	Condition	LOW
unction Rating Summ	ary		
Function		Metrics	Rating
Hydrology		Condition	MEDIUM
Water Quality		Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
Habitat		Condition	LOW

Sub-function Rating Summary

NC WAM FIELD ASSESSMENT FORM

		Accompanies		
08	ACE AID #	Corportor Pottom Mitigation Oita	NCDWR#	4/1/2020
۸.	Project Nar		Date of Evaluation	4/1/2020
A	oplicant/Owner Nar		Wetland Site Name	Wetland J, K, & L
	Wetland Ty		Assessor Name/Organization	Jordan Hessler/ WEI
	Level III Ecoregi		Nearest Named Water Body	Beaverdam Creek
	River Bas		USGS 8-Digit Catalogue Unit	03050102 Mooresville
	Cour □ Yes ⊠ 1		NCDWR Region	Mooresville 35.409333/-81.260885
	🗌 Yes 🖂 I	NO Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees)	35.409333/-81.200885
Ple rec	ease circle and/or n tent past (for instan • Hydrological • Surface and tanks, under • Signs of veg • Habitat/plan the assessment an gulatory Consider Anadromous Federally pro- NCDWR ripz Abuts a Prin Publicly own N.C. Division	rations - Were regulatory considerations events is fish otected species or State endangered or thre arian buffer rule in effect nary Nursery Area (PNA)	tressors is apparent. Consider departure f include, but are not limited to the following. eaver dams, dikes, berms, ponds, etc.) amples: discharges containing obvious pollu etc.) lity, insect damage, disease, storm damage clear-cutting, exotics, etc.) No aluated? ⊠Yes ⊡No If Yes, check all that eatened species ental Concern (AEC) (including buffer)	utants, presence of nearby septic , salt intrusion, etc.) at apply to the assessment area.
	Designated	(d)-listed stream or a tributary to a 303(d)-list		5 Hout
Wh	nat type of natural	stream is associated with the wetland, if	any? (check all that apply)	
	Blackwater		· · · · · ·	
\boxtimes	Brownwater			
	Tidal (if tidal	, check one of the following boxes) \Box Lu	unar 🗌 Wind 🔲 Both	
le f		rea on a coastal island? 🗍 Yes 🖂 I	No	
131	ane assessifient di			
ls t	the assessment a	ea's surface water storage capacity or d	uration substantially altered by beaver?	🗌 Yes 🖾 No
Do	es the assessmer	t area experience overbank flooding dur	ing normal rainfall conditions?	🖾 No
		Condition/Vegetation Condition – assess		
		ach column. Consider alteration to the grou Compare to reference wetland if applicable dence an effect.		
	🖾 A 🖾 A	Not severely altered		
		Severely altered over a majority of the asse sedimentation, fire-plow lanes, skidder tra	essment area (ground surface alteration exa icks, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where appropr on)	pollutants) (vegetation structure
2.	Surface and Sub-	Surface Storage Capacity and Duration -	- assessment area condition metric	
	Check a box in ea Consider both incr deep is expected t Surf Sub	ach column. Consider surface storage capa ease and decrease in hydrology. A ditch ≤ o affect both surface and sub-surface water	acity and duration (Surf) and sub-surface sto 1 foot deep is considered to affect surface . Consider tidal flooding regime, if applicab	water only, while a ditch > 1 foot
		Water storage capacity or duration are sub (examples: draining, flooding, soil compact	red, but not substantially (typically, not suffice stantially altered (typically, alteration sufficie ion, filling, excessive sedimentation, underg	ent to result in vegetation change) round utility lines).
3.	Water Storage/Su	rface Relief – assessment area/wetland t	type condition metric (skip for all marshe	es)
		ach column. Select the appropriate storage	e for the assessment area (AA) and the wet	and type (WT).
	AA WT 3a. A A B B C C M M	Majority of wetland with depressions able to Majority of wetland with depressions able to Majority of wetland with depressions able to Depressions able to pond water < 3 inches	o pond water > 1 deep o pond water 6 inches to 1 foot deep o pond water 3 to 6 inches deep	·
		that maximum depth of inundation is great	•	

 $\square A Evidence that maximum depth of inundation is greater than 2 feet$ $<math display="block">\square B Evidence that maximum depth of inundation is between 1 and 2 feet$ $<math display="block">\square C Evidence that maximum depth of inundation is less than 1 foot$

Soil Texture/Structure – assessment area condition metric (skip for all marshes) 4.

Check a box from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. Make soil observations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional indicators

-	4a. 🛛 A	Sandy soil
	⊠B ⊡C	Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres) Loamy or clayey soils not exhibiting redoximorphic features
		Loamy or clayey gleyed soil Histosol or histic epipedon
4	4b. ⊠A □B	Soil ribbon < 1 inch Soil ribbon ≥ 1 inch

4c. 🖾 A No peat or muck presence

⊡в A peat or muck presence

Discharge into Wetland - opportunity metric 5.

Check a box in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples of sub-surface discharges include presence of nearby septic tank, underground storage tank (UST), etc. Sub

- Surf A
 - Little or no evidence of pollutants or discharges entering the assessment area ⊠Α
- ⊠в ⊡в Noticeable evidence of pollutants or discharges entering the wetland and stressing, but not overwhelming the treatment capacity of the assessment area
- □С ПС Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)

Land Use - opportunity metric (skip for non-riparian wetlands) 6

Check all that apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining to assessment area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M), and within 2 miles and within the watershed draining to the assessment area (2M).

WS 5M 2M ΠA ΠA ΠA > 10% impervious surfaces ⊡в ⊟в ⊟в Confined animal operations (or other local, concentrated source of pollutants ⊠c ⊠C ⊠C ≥ 20% coverage of pasture ØD ΠD ΔD \geq 20% coverage of agricultural land (regularly plowed land) ΠE E E ≥ 20% coverage of maintained grass/herb ĽĴF F F ≥ 20% coverage of clear-cut land G □G □G Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed or hydrologic alterations that prevent drainage and/or overbank flow from affecting the assessment area

Wetland Acting as Vegetated Buffer - assessment area/wetland complex condition metric (skip for non-riparian wetlands) 7.

- Is assessment area within 50 feet of a tributary or other open water? 7a.
 - □No XYes If Yes, continue to 7b. If No, skip to Metric 8.

Wetland buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.

- How much of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
 - ≥ 50 feet ΠA

7c.

- From 30 to < 50 feet
- From 15 to < 30 feet
- ΔD From 5 to < 15 feet
- < 5 feet or buffer bypassed by ditches ΠE
- Tributary width. If the tributary is anastomosed, combine widths of channels/braids for a total width.
- $\boxtimes \leq 15$ -feet wide $\square > 15$ -feet wide \square Other open water (no tributary present)
- 7d. Do roots of assessment area vegetation extend into the bank of the tributary/open water? ⊠Yes No
- 7e. Is stream or other open water sheltered or exposed? Sheltered – adjacent open water with width < 2500 feet and no regular boat traffic. Exposed – adjacent open water with width ≥ 2500 feet or regular boat traffic.
- Wetland Width at the Assessment Area wetland type/wetland complex condition metric (evaluate WT for all marshes and 8 Estuarine Woody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest only)

Check a box in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and the wetland complex at the assessment area (WC). See User Manual for WT and WC boundaries.

WT WC ΠA ΠA ≥ 100 feet Πв ΠВ From 80 to < 100 feet □с □с From 50 to < 80 feet From 40 to < 50 feet D D E E From 30 to < 40 feet ΠF From 15 to < 30 feet F ⊠G G From 5 to < 15 feet ΠН ШΗ < 5 feet

9. Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)

Answer for assessment area dominant landform.

- Evidence of short-duration inundation (< 7 consecutive days) ΠA
- ⊠B □C Evidence of saturation, without evidence of inundation
 - Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)

10. Indicators of Deposition - assessment area condition metric (skip for non-riparian wetlands and all marshes)

- Consider recent deposition only (no plant growth since deposition).
- ⊠A □B Sediment deposition is not excessive, but at approximately natural levels.
 - Sediment deposition is excessive, but not overwhelming the wetland.
- Пс Sediment deposition is excessive and is overwhelming the wetland.

11. Wetland Size - wetland type/wetland complex condition metric

Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT WC

FW (if applicable)

A

⊡в

С

⊠J

ΠK

Πĸ

- ≥ 500 acres ΔA A □В □В From 100 to < 500 acres □С From 50 to < 100 acres D From 25 to < 50 acres
- D ΠE ΠE ΠE From 10 to < 25 acres
- ΠF ΠF ΠF From 5 to < 10 acres
 - ΠG ΠG From 1 to < 5 acres
- ΠG From 0.5 to < 1 acre ШΗ
 - ШН ШН From 0.1 to < 0.5 acre
 - ΜJ ΜJ From 0.01 to < 0.1 acre
 - ΠK < 0.01 acre or assessment area is clear-cut

12. Wetland Intactness - wetland type condition metric (evaluate for Pocosins only)

- Πа Pocosin is the full extent ($\geq 90\%$) of its natural landscape size.
- ΠВ Pocosin type is < 90% of the full extent of its natural landscape size.

13. Connectivity to Other Natural Areas - landscape condition metric

13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide.

Well	Loosely	
ΠA		≥ 500 acres
В	В	From 100 to < 500 acres
□c	⊠C	From 50 to < 100 acres
⊠D	D	From 10 to < 50 acres
ΠE	ΠE	< 10 acres
□F	□F	Wetland type has a poor or no connection to other natural habitats

13b. Evaluate for marshes only.

Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands. Yes No

14. Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)

May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C."

_A	0
В	1 to 4

⊠c 5 to 8

15. Vegetative Composition - assessment area condition metric (skip for all marshes and Pine Flat)

- Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate ΠA species, with exotic plants absent or sparse within the assessment area.
- ⊡В Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata.
- ⊠C Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of noncharacteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.

16. Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)

- Πа Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics).
- В Vegetation diversity is low or has > 10% to 50% cover of exotics.
- ⊠c Vegetation is dominated by exotic species (> 50 % cover of exotics).

17. Vegetative Structure – assessment area/wetland type condition metric

- 17a. Is vegetation present? If Yes, continue to 17b. If No, skip to Metric 18. ⊠Yes □No
- 17b. Evaluate percent coverage of assessment area vegetation for all marshes only. Skip to 17c for non-marsh wetlands. ≥ 25% coverage of vegetation A ⊡в
 - < 25% coverage of vegetation
- 17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.

	AA	WT .	
Canopy	□A	⊟A	Canopy closed, or nearly closed, with natural gaps associated with natural processes
	⊠B	⊠B	Canopy present, but opened more than natural gaps
	□C	□C	Canopy sparse or absent
Mid-Story	□A	□A	Dense mid-story/sapling layer
	⊠B	⊠B	Moderate density mid-story/sapling layer
	□C	□C	Mid-story/sapling layer sparse or absent
Shrub	□A	□A	Dense shrub layer
	□B	□B	Moderate density shrub layer
	⊠C	⊠C	Shrub layer sparse or absent
Herb	⊠A	⊠A	Dense herb layer
	□B	□B	Moderate density herb layer

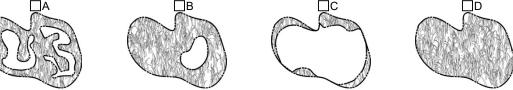
□C ПС Herb layer sparse or absent

18. Snags - wetland type condition metric (skip for all marshes)

Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability). ⊠в Not A

19. Diameter Class Distribution – wetland type condition metric (skip for all marshes)

- Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are present.
- ⊠В . Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH.
- ПС Majority of canopy trees are < 6 inches DBH or no trees.


20. Large Woody Debris – wetland type condition metric (skip for all marshes)

Include both natural debris and man-placed natural debris.

ΠA Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability). ⊠в Not A

21. Vegetation/Open Water Dispersion – wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)

Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.

22. Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)

Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.

Overbank and overland flow are not severely altered in the assessment area. ΠA

- ⊠В Overbank flow is severely altered in the assessment area.
- С Overland flow is severely altered in the assessment area.
- D Both overbank and overland flow are severely altered in the assessment area.

Notes

NC WAM Wetland Rating Sheet Accompanies User Manual Version 5.0

Wetland Site Name Wetland J, K, & L	Date of Assessment	4/1/20				
Wetland Type Headwater Forest	Assessor Name/Organization	Jordan Hessler/WEI				
Notes on Field Assessment Form (Y/N) NO						
Presence of regulatory considerations (Y/N)		NO				
Wetland is intensively managed (Y/N) YES						
Assessment area is located within 50 feet of a natural tributary or other open water (Y/N) YES						
Assessment area is substantially altered by beaver (Y/N) NO						
Assessment area experiences overbank flooding during normal rainfall conditions (Y/N) NO						
Assessment area is on a coastal island (Y/N)		NO				

Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention Sub-surface Storage and	Condition	LOW
	Retention	Condition	HIGH
Water Quality	Pathogen Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
	Particulate Change	Condition	MEDIUM
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
	Soluble Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Physical Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat	Physical Structure	Condition	MEDIUM
	Landscape Patch Structure	Condition	LOW
	Vegetation Composition	Condition	LOW
unction Rating Summar	у		
Function		Metrics	Rating
Hydrology		Condition	MEDIUM
Water Quality		Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
Habitat		Condition	LOW

Sub-function Rating Summary

NC WAM FIELD ASSESSMENT FORM Accompanies User Manual Version 5.0

USACE AID #	4	Accompanies		
	≠ oject Name	Carponter Bottom Mitigation Site	NCDWR#	4/1/2020
	•	· · · ·	Date of Evaluation Wetland Site Name	
Applicant/Ov				Wetland M & N
	tland Type		Assessor Name/Organization	Jordan Hessler/ WEI
	Ecoregion		Nearest Named Water Body	Beaverdam Creek
۲ F	River Basin	-	USGS 8-Digit Catalogue Unit	03050102
	County		NCDWR Region	Mooresville
	s 🛛 No	Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees)	35.410976/-81.261605
Please circle recent past (for Surf Surf Sigr Hab Is the assess Regulatory C Ana Fed NCC Abu Pub	and/or ma or instance lrological m face and su s, undergr ns of veget itat/plant c sment area Considerat dromous fi erally prote DWR riparia ts a Primar licly owned Division c	, within 10 years). Noteworthy stressors indifications (examples: ditches, dams, b ib-surface discharges into the wetland (ex- ound storage tanks (USTs), hog lagoons, ation stress (examples: vegetation morta ommunity alteration (examples: mowing, a intensively managed? ⊠ Yes ions - Were regulatory considerations ev- sh ected species or State endangered or three an buffer rule in effect y Nursery Area (PNA) I property of Coastal Management Area of Environm	etressors is apparent. Consider departure f include, but are not limited to the following. eaver dams, dikes, berms, ponds, etc.) camples: discharges containing obvious pollu etc.) lity, insect damage, disease, storm damage clear-cutting, exotics, etc.) No aluated? ⊠Yes ⊡No If Yes, check all the eatened species	utants, presence of nearby septic , salt intrusion, etc.) at apply to the assessment area.
	its a stream ignated NC its a 303(d)	n with a NCDWQ classification of SA or su CNHP reference community -listed stream or a tributary to a 303(d)-lis	upplemental classifications of HQW, ORW, o	or Trout
□ Blac	f natural st ckwater wnwater	ream is associated with the wetland, if	any? (check all that apply)	
Tida Tida	al (if tidal, c	heck one of the following boxes) \Box Lu		
is the assess	sment area	a on a coastal island? 🔲 Yes 🛛 I		
Is the assess	sment area	a's surface water storage capacity or d	uration substantially altered by beaver?	🗌 Yes 🖾 No
			ing normal rainfall conditions?	🛛 No
				—
1. Ground S	Surface Co	ndition/Vegetation Condition – assess	ment area condition metric	
assessme area base	ent area. C		und surface (GS) in the assessment area ar (see User Manual). If a reference is not ap	
DA [🛛 A 🛛 N	ot severely altered		
⊠в	⊠B S se al	everely altered over a majority of the asse edimentation, fire-plow lanes, skidder tra	essment area (ground surface alteration exa tcks, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where appropr on)	pollutants) (vegetation structure
2. Surface a	Ind Sub-Su	urface Storage Capacity and Duration -	 assessment area condition metric 	
Check a b Consider I deep is ex Surf S □A [□B]	box in eacl both increa cpected to a Sub □A W ☑B W	n column. Consider surface storage capa ise and decrease in hydrology. A ditch ≤ affect both surface and sub-surface water /ater storage capacity and duration are no /ater storage capacity or duration are alte	acity and duration (Surf) and sub-surface sto 1 foot deep is considered to affect surface Consider tidal flooding regime, if applicab ot altered. wred, but not substantially (typically, not suffi	water only, while a ditch > 1 foot le. cient to change vegetation).
⊠c [stantially altered (typically, alteration sufficiention, filling, excessive sedimentation, underg	
3. Water Sto	orage/Surf	ace Relief – assessment area/wetland t	type condition metric (skip for all marshe	es)
Check a b AA		h column. Select the appropriate storage	e for the assessment area (AA) and the wet	land type (WT).
3a.	□A M □B M □C M	ajority of wetland with depressions able t ajority of wetland with depressions able t ajority of wetland with depressions able t epressions able to pond water < 3 inches	o pond water 6 inches to 1 foot deep o pond water 3 to 6 inches deep	
36 🗆 A I	Evidence th	nat maximum depth of inundation is great	er than 2 feet	

 \square B Evidence that maximum depth of inundation is between 1 and 2 feet \square C Evidence that maximum depth of inundation is less than 1 foot

Soil Texture/Structure – assessment area condition metric (skip for all marshes) 4.

Check a box from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. Make soil observations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional indicators

-	4a. 🛛 A	Sandy soil
	⊠B ⊡C	Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres) Loamy or clayey soils not exhibiting redoximorphic features
		Loamy or clayey gleyed soil Histosol or histic epipedon
4	4b. ⊠A □B	Soil ribbon < 1 inch Soil ribbon ≥ 1 inch

4c. 🖾 A No peat or muck presence

⊡в A peat or muck presence

Discharge into Wetland - opportunity metric 5.

Check a box in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples of sub-surface discharges include presence of nearby septic tank, underground storage tank (UST), etc. Sub

- Surf A
 - Little or no evidence of pollutants or discharges entering the assessment area ⊠Α
- ⊠в ⊡в Noticeable evidence of pollutants or discharges entering the wetland and stressing, but not overwhelming the treatment capacity of the assessment area
- □С ПС Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)

Land Use - opportunity metric (skip for non-riparian wetlands) 6

Check all that apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining to assessment area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M), and within 2 miles and within the watershed draining to the assessment area (2M).

WS 5M 2M ΠA ΠA ΠA > 10% impervious surfaces ⊡в ⊟в ⊟в Confined animal operations (or other local, concentrated source of pollutants ⊠c ⊠C ⊠C ≥ 20% coverage of pasture ØD ΠD ΔD \geq 20% coverage of agricultural land (regularly plowed land) ΠE E E ≥ 20% coverage of maintained grass/herb ĽĴF F F ≥ 20% coverage of clear-cut land G □G G Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed or hydrologic alterations that prevent drainage and/or overbank flow from affecting the assessment area

Wetland Acting as Vegetated Buffer - assessment area/wetland complex condition metric (skip for non-riparian wetlands) 7.

Is assessment area within 50 feet of a tributary or other open water? 7a.

TYes ΠNο If Yes, continue to 7b. If No, skip to Metric 8.

Wetland buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.

- How much of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
 - ≥ 50 feet ΠA

7c.

- From 30 to < 50 feet
- From 15 to < 30 feet
- ΠD From 5 to < 15 feet
- < 5 feet or buffer bypassed by ditches ΠE
- Tributary width. If the tributary is anastomosed, combine widths of channels/braids for a total width.
- $\boxtimes \leq 15$ -feet wide $\square > 15$ -feet wide \square Other open water (no tributary present)
- 7d. Do roots of assessment area vegetation extend into the bank of the tributary/open water? ∐Yes ⊠No
- 7e. Is stream or other open water sheltered or exposed? Sheltered – adjacent open water with width < 2500 feet and no regular boat traffic. Exposed – adjacent open water with width \geq 2500 feet or regular boat traffic.
- Wetland Width at the Assessment Area wetland type/wetland complex condition metric (evaluate WT for all marshes and 8 Estuarine Woody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest only)

Check a box in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and the wetland complex at the assessment area (WC). See User Manual for WT and WC boundaries.

WT WC ΠA ΠA ≥ 100 feet Πв В From 80 to < 100 feet □с □с From 50 to < 80 feet From 40 to < 50 feet D ΔD E E From 30 to < 40 feet From 15 to < 30 feet F ΠF G ΠG From 5 to < 15 feet ⊟н ΠН < 5 feet

9. Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)

Answer for assessment area dominant landform.

- Evidence of short-duration inundation (< 7 consecutive days) ⊠Α
- ⊡в Evidence of saturation, without evidence of inundation
- □c Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)

10. Indicators of Deposition - assessment area condition metric (skip for non-riparian wetlands and all marshes)

- Consider recent deposition only (no plant growth since deposition).
- Sediment deposition is not excessive, but at approximately natural levels. ΠA
- ⊠в Sediment deposition is excessive, but not overwhelming the wetland.
- ПС Sediment deposition is excessive and is overwhelming the wetland.

11. Wetland Size - wetland type/wetland complex condition metric

Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT WC

FW (if applicable) ≥ 500 acres

A

⊡В

J

Πĸ

ПК

- ΔA A □В □В From 100 to < 500 acres □С From 50 to < 100 acres
- D From 25 to < 50 acres
- ΠE ΠE ΠE From 10 to < 25 acres
 - ΠF ΠF From 5 to < 10 acres
- ΠF ⊠G ΠG From 1 to < 5 acres
- ⊠G From 0.5 to < 1 acre ШΗ
 - ШН ШН From 0.1 to < 0.5 acre
 - ΠJ ΠJ From 0.01 to < 0.1 acre
 - ⊠κ < 0.01 acre or assessment area is clear-cut

12. Wetland Intactness - wetland type condition metric (evaluate for Pocosins only)

- Πа Pocosin is the full extent ($\geq 90\%$) of its natural landscape size.
- ΠВ Pocosin type is < 90% of the full extent of its natural landscape size.

13. Connectivity to Other Natural Areas - landscape condition metric

13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide.

Well	Loosely	
ΠA		≥ 500 acres
В	⊠В	From 100 to < 500 acres
□С	C	From 50 to < 100 acres
⊠D	D	From 10 to < 50 acres
ΠE	ΠE	< 10 acres
□F	□F	Wetland type has a poor or no connection to other natural habitats

13b. Evaluate for marshes only.

Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands. Yes No

14. Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)

May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C."

A	0
В	1 to 4

⊠C 5 to 8

15. Vegetative Composition - assessment area condition metric (skip for all marshes and Pine Flat)

- Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate ΠA species, with exotic plants absent or sparse within the assessment area.
- ⊡В Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata.
- ⊠C Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of noncharacteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.

16. Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)

- Πа Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics).
- Vegetation diversity is low or has > 10% to 50% cover of exotics. ⊠В
- Vegetation is dominated by exotic species (> 50 % cover of exotics). □с

17. Vegetative Structure – assessment area/wetland type condition metric

- 17a. Is vegetation present? If Yes, continue to 17b. If No, skip to Metric 18. ⊠Yes □No
- 17b. Evaluate percent coverage of assessment area vegetation for all marshes only. Skip to 17c for non-marsh wetlands. ≥ 25% coverage of vegetation A ⊡в
 - < 25% coverage of vegetation
- 17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.

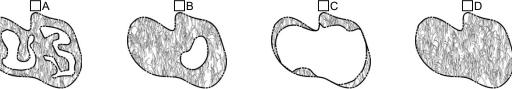
/ Canopy	AA □A □B ⊠C	WT □A □B ⊠C	Canopy closed, or nearly closed, with natural gaps associated with natural processes Canopy present, but opened more than natural gaps Canopy sparse or absent
Mid-Story	□A	⊟A	Dense mid-story/sapling layer
	□B	⊟B	Moderate density mid-story/sapling layer
	⊠C	⊠C	Mid-story/sapling layer sparse or absent
Shrub	□A	□A	Dense shrub layer
	□B	□B	Moderate density shrub layer
	⊠C	⊠C	Shrub layer sparse or absent
Herb	□A	□A	Dense herb layer
	⊠B	⊠B	Moderate density herb layer
	□C	□C	Herb layer sparse or absent

18. Snags - wetland type condition metric (skip for all marshes)

Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability). ⊠в Not A

19. Diameter Class Distribution – wetland type condition metric (skip for all marshes)

- Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are present.
- Πв . Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH.
- ⊠С Majority of canopy trees are < 6 inches DBH or no trees.


20. Large Woody Debris – wetland type condition metric (skip for all marshes)

Include both natural debris and man-placed natural debris.

ΠA Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability). ⊠в Not A

21. Vegetation/Open Water Dispersion – wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)

Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.

22. Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)

Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.

- Overbank and overland flow are not severely altered in the assessment area. A
- ΠВ Overbank flow is severely altered in the assessment area.
- ⊠c Overland flow is severely altered in the assessment area. D
 - Both overbank and overland flow are severely altered in the assessment area.

Notes

These areas are located in the headwaters of the drainage area where cattle have full access. Wetland areas have been trampled and there is evidence of ditching throughout these areas to drain them for pasture use.

NC WAM Wetland Rating Sheet Accompanies User Manual Version 5.0

Wetland Site Name Wetland M & N	Date of Assessment	4/1/20				
Wetland Type Headwater Forest	Assessor Name/Organization	Jordan Hessler/WEI				
Notes on Field Assessment Form (Y/N) YES						
Presence of regulatory considerations (Y/N)		NO				
Wetland is intensively managed (Y/N) YES						
Assessment area is located within 50 feet of a natural tributary or other open water (Y/N) NO						
Assessment area is substantially altered by beaver (Y/N) NO						
Assessment area experiences overbank flooding during normal rainfall conditions (Y/N) NO						
Assessment area is on a coastal island (Y/N)		NO				

Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention Sub-surface Storage and	Condition	LOW
	Retention	Condition	HIGH
Water Quality	Pathogen Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
	Particulate Change	Condition	LOW
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
	Soluble Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Physical Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat	Physical Structure	Condition	LOW
unction Rating Summary Function Hydrology	Landscape Patch Structure	Condition	LOW
	Vegetation Composition	Condition	LOW
unction Rating Summar	у		
Function		Metrics	Rating
Hydrology		Condition	MEDIUM
Water Quality		Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
Habitat		Condition	LOW

Sub-function Rating Summary

U.S. Army O WETLAND DETERMINATION DATA SHI See ERDC/EL TR-07-24; the		ins and Piedmont R	Region	Requirement	:: 0710-xxxx, Exp: F Control Symbol EX R 335-15, paragrapl	EMPT:
Project/Site: Carpernter Bottom Mitigation Sit	e	City/County: Gast	on		Sampling Date:	7/12/19
Applicant/Owner: Wildlands Engineering Ir	าC.			State: NC	Sampling Point:	DP1
Investigator(s): Kristi Suggs & Ian Eckardt		Section, Township, Ra	ange: N/A			
Landform (hillside, terrace, etc.): Floodplain	Loc	al relief (concave, con	ivex, none):	Concave	Slope (%):	0%
Subregion (LRR or MLRA): LRR P, MLRA 136	6 Lat: 35.40491	Lo	ong: -81.2585	3	Datum:	NAD 83
Soil Map Unit Name: Pacolet Sandy clay loam				NWI classificat	ion: N/A	
Are climatic / hydrologic conditions on the site t		r? Ves	X No		explain in Remarks	s)
Are Vegetation, Soil, or Hydrolog				ances" present?		
Are Vegetation, Soil, or Hydrolog	gy naturally proble	ematic? (If needed	d, explain an	y answers in Re	marks.)	
SUMMARY OF FINDINGS – Attach s	site map showing s	ampling point lo	cations, tr	ansects, im	portant featu	res, etc.
Hydric Soil Present? Y	res X No res X No res X No	Is the Sampled Area within a Wetland?	a	Yes X	No	
HYDROLOGY						
Wetland Hydrology Indicators:			Secon	dary Indicators	minimum of two r	required)
Primary Indicators (minimum of one is required	d: check all that apply)			urface Soil Cracl	-	<u>loquilouj</u>
X Surface Water (A1)	True Aquatic Plants (B14)			ed Concave Surfa	ce (B8)
High Water Table (A2)	Hydrogen Sulfide Od			ainage Patterns		. ,
Saturation (A3)	Oxidized Rhizosphere	es on Living Roots (C3	3)M	oss Trim Lines (B16)	
	X Presence of Reduced		Dr	y-Season Wate	r Table (C2)	
Sediment Deposits (B2)	Recent Iron Reductio	()		ayfish Burrows	. ,	
Drift Deposits (B3)	Thin Muck Surface (C				on Aerial Imagery	y (C9)
Algal Mat or Crust (B4)	Other (Explain in Ren	narks)		unted or Stresse		
Iron Deposits (B5)				eomorphic Posit		
Inundation Visible on Aerial Imagery (B7) Water-Stained Leaves (B9)				allow Aquitard (crotopographic		
Aquatic Fauna (B13)				C-Neutral Test	. ,	
Field Observations:		Γ	<u></u> []		()	
	No Depth (inche	es): 12				
	No X Depth (inche	·				
	No X Depth (inche	· · · · · · · · · · · · · · · · · · ·	and Hydrolo	gy Present?	Yes X	No
					-	

(includes capillary fringe)

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:

Surface water was present in the wetland; however, it was not present in the auger hole.

Sampling Point: DP1

Tree Stratum (Plot size:)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1.	70 COVEI	Opecies :	Otatus	Number of Dominant Species
2.				That Are OBL, FACW, or FAC:(A)
3				Total Number of Dominant
4				Species Across All Strata: 1 (B)
5				Percent of Dominant Species
7.				That Are OBL, FACW, or FAC: 100.0% (A/B) Prevalence Index worksheet:
/:		=Total Cover		Total % Cover of: Multiply by:
50% of total cover:		of total cover:		$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Sapling/Shrub Stratum (Plot size:				FACW species $5 \times 2 = 10$
1				FAC species $15 \times 3 = 45$
2				FACU species $0 \times 4 = 0$
3.				UPL species $0 \times 5 = 0$
4				Column Totals: 100 (A) 135 (B)
				$\frac{1}{1.35}$
5. 6.				Hydrophytic Vegetation Indicators:
7.				1 - Rapid Test for Hydrophytic Vegetation
8.				X 2 - Dominance Test is >50%
9.				X 3 - Prevalence Index is ≤3.0 ¹
		=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover:		of total cover:		data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 5)				Problematic Hydrophytic Vegetation ¹ (Explain)
1. Murdannia keisak	80	Yes	OBL	¹ Indicators of hydric soil and wetland hydrology must be
2. Microstegium vimineum	15	No	FAC	present, unless disturbed or problematic.
3. Persicaria lapathifolia	5	No	FACW	Definitions of Four Vegetation Strata:
4				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5				more in diameter at breast height (DBH), regardless of
6				height.
7				Sapling/Shrub – Woody plants, excluding vines, less
8				than 3 in. DBH and greater than or equal to 3.28 ft
9				(1 m) tall.
10				Herb – All herbaceous (non-woody) plants, regardless
11				of size, and woody plants less than 3.28 ft tall.
		=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
	50 20%	of total cover:	20	height.
Woody Vine Stratum (Plot size:)				
1				
2				
3				
4				
5				Hydrophytic
		=Total Cover		Vegetation
50% of total cover:	20%	of total cover:		Present? Yes <u>X</u> No
Remarks: (Include photo numbers here or on a sepa	arate sheet.)			

Depth	Matrix		Redo	x Featur	es					
inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Rema	ırks
0-4	10YR 3/2	90	7.5YR 4/6	10	С	М	Loamy/Cla	yey Pro	ominent redox	concentrations
4-14									Refusal due	to bedrock
					_					
Type: C=Co	ncentration D=Dep	letion RM	I=Reduced Matrix, N	IS=Mas	ked Sand	d Grains	2	ocation: PI =	Pore Lining, M=	-Matrix
lydric Soil Ir	•								-	ic Hydric Soils
Histosol (A1)		Polyvalue Be	elow Sur	face (S8) (MLRA	147, 148)	2 cm M	uck (A10) (ML	RA 147)
Histic Epi	pedon (A2)		Thin Dark S	urface (S	9) (MLR	A 147, 14	18)	Coast F	Prairie Redox (A	A16)
-	ck Histic (A3) Loamy Mucky Mineral (F1) (MLRA 136				ILRA 136	5)	(MLR	A 147, 148)		
Hydrogen	Sulfide (A4)		Loamy Gley	ed Matrix	x (F2)		Piedmont Floodplain Soils (F19)			
Stratified	Layers (A5)		Depleted Ma	trix (F3)	. ,			(MLR	A 136, 147)	. ,
2 cm Muc	k (A10) (LRR N)		X Redox Dark	Surface	(F6)		Red Parent Material (F21)			
Depleted	Below Dark Surfac	e (A11)	Depleted Da	rk Surfa	ce (F7)		(outside MLRA 127, 147, 148)			
Thick Dar	k Surface (A12)	. ,	X Redox Depr	essions	(F8)			Very St	nallow Dark Su	rface (F22)
Sandy Mu	ucky Mineral (S1)		Iron-Mangar	ese Mas	sses (F12	2) (LRR N	I,	Other (I	Explain in Rem	arks)
Sandy Gl	eyed Matrix (S4)		MLRA 13	5)		, .				
Sandy Re	edox (S5)		Umbric Surfa	ace (F13) (MLRA	122, 136	5)	³ Indicators	of hydrophytic v	vegetation and
Stripped I	Matrix (S6)		Piedmont Fl	odplain	Soils (F	19) (MLR	A 148)	wetland	I hydrology mu	st be present,
Dark Surf	ace (S7)		Red Parent	Material	(F21) (M	LRA 127	, 147, 148)	unless	disturbed or pro	oblematic.
Restrictive La	ayer (if observed):									
Type:	Bedr	ock								
Depth (ind	ches):	10					Hydric Soi	il Present?	Yes X	No
Remarks:										

U.S. Army C WETLAND DETERMINATION DATA SHE See ERDC/EL TR-07-24; the	t Region Require	OMB Control #: 0710-xxxx, Exp: Pending Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)			
Project/Site: Carpenter Bottom Mitigation Site	City/County: G	aston	Sampling Date: 7/12/19		
Applicant/Owner: Wildlands Engineering, I	nc.	State:	NC Sampling Point: DP2		
Investigator(s): Kristi Suggs & Ian Eckardt	Section, Township,	Range: N/A			
Landform (hillside, terrace, etc.): Floodplain	Local relief (concave, o	convex, none): None	Slope (%): <1%		
Subregion (LRR or MLRA): LRR P, MLRA 136	Lat: 35.40635	Long: -81.25958	Datum: NAD 83		
Soil Map Unit Name: Worsham loam (WoA)		NWI clas	sification: N/A		
Are climatic / hydrologic conditions on the site t	ypical for this time of year? Yes	No X (l	f no, explain in Remarks.)		
Are Vegetation X , Soil , or Hydrolog	gy significantly disturbed? Are "N	ormal Circumstances" pre	esent? Yes No X		
Are Vegetation , Soil , or Hydrolog	gy naturally problematic? (If nee	ded, explain any answers	in Remarks.)		
SUMMARY OF FINDINGS – Attach s	ite map showing sampling point	locations, transects	s, important features, etc.		
Hydrophytic Vegetation Present? Y	es X No Is the Sampled A	Area			
Hydric Soil Present? Y	es No X within a Wetland	l? Yes	No X		
Wetland Hydrology Present? Y	es No_X				
Remarks: Sampling upland point it representative for We production.	tlands A, B, C, D, & E. Sampling point is lo	cated in an agricultural fie	ld primarlily used for hay		

HYDROLOGY

Wetland Hydrology Indicators:			Secondary Indicators (minimum of two required)	
Primary Indicators (minimum of one is requ	Surface Soil Cracks (B6)			
Surface Water (A1)		Sparsely Vegetated Concave Surface (B8)		
High Water Table (A2)	Hydrogen Sulfide Odor (C1)		Drainage Patterns (B10)	
Saturation (A3)	Oxidized Rhizospheres on Living Ro	oots (C3)	Moss Trim Lines (B16)	
Water Marks (B1)	Presence of Reduced Iron (C4)		Dry-Season Water Table (C2)	
Sediment Deposits (B2)	Recent Iron Reduction in Tilled Soil	s (C6)	Crayfish Burrows (C8)	
Drift Deposits (B3)	Thin Muck Surface (C7)		Saturation Visible on Aerial Imagery (C9)	
Algal Mat or Crust (B4)	Other (Explain in Remarks)		Stunted or Stressed Plants (D1)	
Iron Deposits (B5)			Geomorphic Position (D2)	
Inundation Visible on Aerial Imagery (B	57)		Shallow Aquitard (D3)	
Water-Stained Leaves (B9)			Microtopographic Relief (D4)	
Aquatic Fauna (B13)			FAC-Neutral Test (D5)	
Field Observations:				
Surface Water Present? Yes	No X Depth (inches):			
Water Table Present? Yes	No X Depth (inches):			
Saturation Present? Yes	No X Depth (inches):	Wetland	Hydrology Present? Yes No X	
(includes capillary fringe)				
Describe Recorded Data (stream gauge, m	onitoring well, aerial photos, previous insp	ections), if a	available:	
Remarks:				
No hydrologic indicators present.				

Sampling Point: DP2

· · ·				
	Absolute	Dominant	Indicator	Development Texture laster of
Tree Stratum (Plot size: 30)	% Cover	Species?	Status	Dominance Test worksheet:
1. <u>Acer rubrum</u>	10	Yes	FAC	Number of Dominant Species
2. Liquidambar styraciflua	10	Yes	FAC	That Are OBL, FACW, or FAC: (A)
3. Juniperus virginiana	5	Yes	FACU	Total Number of Dominant
4				Species Across All Strata: <u>6</u> (B)
5				Percent of Dominant Species
6.				That Are OBL, FACW, or FAC: <u>66.7%</u> (A/B)
7				Prevalence Index worksheet:
	25	=Total Cover		Total % Cover of: Multiply by:
50% of total cover:	13 20%	of total cover:	5	OBL species <u>5</u> x 1 = <u>5</u>
Sapling/Shrub Stratum (Plot size: 15)			FACW species 0 x 2 = 0
1. Cephalanthus occidentalis	5	Yes	OBL	FAC species 30 x 3 = 90
2. Liquidambar styraciflua	5	Yes	FAC	FACU species 100 x 4 = 400
3.				UPL species 0 x 5 = 0
4				Column Totals: 135 (A) 495 (B)
5.				Prevalence Index = B/A = 3.67
6.				Hydrophytic Vegetation Indicators:
7.				1 - Rapid Test for Hydrophytic Vegetation
8.				X 2 - Dominance Test is >50%
9.				3 - Prevalence Index is ≤3.0 ¹
	10	=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover:	-	of total cover:	2	data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 5)	<u> </u>			Problematic Hydrophytic Vegetation ¹ (Explain)
· · · · · · · · · · · · · · · · · · ·	90	Vee	FACU	
		Yes		¹ Indicators of hydric soil and wetland hydrology must be
2. Ambrosia artemisiifolia	5	No	FACU	present, unless disturbed or problematic.
3. Dichanthelium clandestinum	5	No	FAC	Definitions of Four Vegetation Strata:
4.				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5.				more in diameter at breast height (DBH), regardless of height.
6.				
7.				Sapling/Shrub – Woody plants, excluding vines, less
8				than 3 in. DBH and greater than or equal to 3.28 ft
9.				(1 m) tall.
10				Herb – All herbaceous (non-woody) plants, regardless
11				of size, and woody plants less than 3.28 ft tall.
	100	=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover:	50 20%	of total cover:	20	height.
Woody Vine Stratum (Plot size: 5)				
1.				
2.				
3.				
4				
5.				
		=Total Cover		Hydrophytic
50% of total cover:		of total cover:		Vegetation Present? Yes X No
Remarks: (Include photo numbers here or on a sep	,	(production		
Sampling location is in an agricultural field primarli	y used for hay	production.		

SOIL

Depth	Matrix		Redo	x Featur						
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Ren	narks
0-14	5YR 4/6	100					Loamy/Clay	yey		
1			De duce d Matrice N				2,		Dama Linin m N	4 . N.4 . 4
	Concentration, D=Depl	letion, Rivi	=Reduced Matrix, N	15=Mas	ked Sand	grains.	L		Pore Lining, N	atic Hydric Soils
Histoso			Polyvalue B	elow Sur	face (S8		147 148)		luck (A10) (M	•
	pipedon (A2)		Polyvalue Below Surface (S8) (MLRA 14 Thin Dark Surface (S9) (MLRA 147, 148						Prairie Redox	•
	listic (A3)		Loamy Mucky Mineral (F1) (MLRA 136)						RA 147, 148)	((10)
	en Sulfide (A4)		Loamy Gley	•	• • •		Piedmont Floodplain Soils (F19)			
· · ·	d Layers (A5)		Depleted Ma		` '			(MLRA 136, 147)		
	uck (A10) (LRR N)		Redox Dark	• • •			Red Parent Material (F21)			(F21)
	d Below Dark Surface	e (A11)	Depleted Da		• •		(outside MLRA 127, 147, 14			. ,
·	ark Surface (A12)	()	Redox Depr		• •		Very Shallow Dark Surface (F22			
	Mucky Mineral (S1)		Iron-Mangar		. ,	2) (LRR N	I,		Explain in Re	. ,
	Gleyed Matrix (S4)				,	<i>,</i> , ,				,
	Redox (S5)		Umbric Surfa	ace (F13	B) (MLRA	122, 136	5)	³ Indicators	of hydrophytic	c vegetation and
	d Matrix (S6)		Piedmont Fl							-
Dark Su	urface (S7)		Red Parent	Material	(F21) (M	LRA 127,	147, 148)	unless	disturbed or p	problematic.
Restrictive	Layer (if observed):									
Type:										
Depth (i	inches):						Hydric Soi	Present?	Yes	No X
Remarks:									-	

U.S. Army WETLAND DETERMINATION DATA S See ERDC/EL TR-07-24; t	OMB Control #: 0710-xxxx, Exp: Pending Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)					
Project/Site: Carpenter Bottom Mitigation S	ite	City/County: Gaston	Sampling Date: 7/12/19			
Applicant/Owner: Wildlands Engineering	, Inc.		State: NC Sampling Point: DP3			
Investigator(s): Kristi Suggs & Ian Eckardt	·	Section, Township, Range: N/A				
Landform (hillside, terrace, etc.): Floodplair		cal relief (concave, convex, none				
Subregion (LRR or MLRA): LRR P, MLRA 1			· · · · · ·			
		Long: <u>-81.25</u>				
Soil Map Unit Name: Worsham Ioam (WoA)			NWI classification: N/A			
Are climatic / hydrologic conditions on the site			lo (If no, explain in Remarks.)			
Are Vegetation, Soil, or Hydro			nstances" present? Yes X No			
Are Vegetation, Soil, or Hydro	logy naturally probl	ematic? (If needed, explain	any answers in Remarks.)			
SUMMARY OF FINDINGS – Attach	site map showing	sampling point locations	transects, important features, etc.			
Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present? Remarks:	Yes X No Yes X No Yes X No	Is the Sampled Area within a Wetland?	Yes X No			
HYDROLOGY						
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required)	rad: aback all that apply)	Sec	ondary Indicators (minimum of two required) Surface Soil Cracks (B6)			
Surface Water (A1)	True Aquatic Plants	(B14) X	Sparsely Vegetated Concave Surface (B8)			
High Water Table (A2)	Hydrogen Sulfide Od		Drainage Patterns (B10)			
Saturation (A3)		res on Living Roots (C3)	Moss Trim Lines (B16)			
Water Marks (B1)	Presence of Reduce	ed Iron (C4)	Dry-Season Water Table (C2)			
Sediment Deposits (B2)	Recent Iron Reduction	on in Tilled Soils (C6) X	X Crayfish Burrows (C8)			
Drift Deposits (B3)	Thin Muck Surface (,	Saturation Visible on Aerial Imagery (C9)			
Algal Mat or Crust (B4)	Other (Explain in Re		Stunted or Stressed Plants (D1)			
Iron Deposits (B5)	- \	<u></u> X	Geomorphic Position (D2)			
Inundation Visible on Aerial Imagery (B7	()		Shallow Aquitard (D3)			
X Water-Stained Leaves (B9) Aquatic Fauna (B13)			Microtopographic Relief (D4) FAC-Neutral Test (D5)			
Field Observations:						
Surface Water Present? Yes	No X Depth (inch	es).				
Water Table Present? Yes	No X Depth (inch					
Saturation Present? Yes	No X Depth (inch		ology Present? Yes X No			
(includes capillary fringe)						
Describe Recorded Data (stream gauge, mo	nitoring well, aerial photos	s, previous inspections), if availat	le:			
Remarks:						

Sampling Point: DP3

[Absolute	Dominant	Indicator	Τ
Tree Stratum (Plot size: 30)	% Cover	Species?	Status	Dominance Test worksheet:
1. Acer rubrum	50	Yes	FAC	Number of Dominant Species
2. Juglans nigra	25	Yes	FACU	That Are OBL, FACW, or FAC: 4 (A)
3. Ilex opaca	10	No	FACU	Total Number of Dominant
4.				Species Across All Strata: 7 (B)
5.				
6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 57.1% (A/B)
7.			·	Prevalence Index worksheet:
	85	=Total Cover		Total % Cover of: Multiply by:
50% of total cover: 43		of total cover:	17	$\frac{1}{\text{OBL species}} 0 \qquad \text{x1} = 0$
		or total cover.		
/	F	Na		· · · · · · · · · · · · · · · · · · ·
1. Ligustrum sinense	5	No	FACU	FAC species 80 x 3 = 240
2. Ilex opaca	25	Yes	FACU	FACU species <u>86</u> x 4 = <u>344</u>
3. Liriodendron tulipifera	1	No	FACU	UPL species <u>10</u> x 5 = <u>50</u>
4				Column Totals: 216 (A) 714 (B)
5				Prevalence Index = B/A = 3.31
6.				Hydrophytic Vegetation Indicators:
7.				1 - Rapid Test for Hydrophytic Vegetation
8.				X 2 - Dominance Test is >50%
9.				$3 - Prevalence Index is \leq 3.0^{1}$
· · · · · · · · · · · · · · · · · · ·	31	=Total Cover	·	4 - Morphological Adaptations ¹ (Provide supporting
E0% of total approximation 16			7	data in Remarks or on a separate sheet)
50% of total cover: 16) 20%	of total cover:	7	
Herb Stratum (Plot size: 5)				Problematic Hydrophytic Vegetation ¹ (Explain)
1. Sanicula marilandica	5	No	FACU	¹ Indicators of hydric soil and wetland hydrology must be
2. Impatiens capensis	20	Yes	FACW	present, unless disturbed or problematic.
3. Boehmeria cylindrica	20	Yes	FACW	Definitions of Four Vegetation Strata:
4. Microstegium vimineum	30	Yes	FAC	Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5. Parthenocissus quinquefolia	15	No	FACU	more in diameter at breast height (DBH), regardless of
6.				height.
7.				Sapling/Shrub – Woody plants, excluding vines, less
8.				than 3 in. DBH and greater than or equal to 3.28 ft
9.		·		(1 m) tall.
0. 40			. <u> </u>	Harb All harbassous (non woody) plants, regardless
10				Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
11				
	90	=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover: 45	<u>5</u> 20%	of total cover:	18	height.
Woody Vine Stratum (Plot size: 5)				
1. Poncirus trifoliata	10	Yes	UPL	
2.				
3.				
4.				
5.				
· · · · · · · · · · · · · · · · · · ·	10	=Total Cover		Hydrophytic
			0	Vegetation
50% of total cover: 5	20%	of total cover:	2	Present? Yes X No
Remarks: (Include photo numbers here or on a separ	rate sheet.)			

	cription: (Describe	to the dep				ator or co	ommini the abs	sence of tha	icators.)		
Depth (inches)	Matrix Color (moist)	%	Color (moist)	x Featur %	Type ¹	Loc ²	Texture		Rema	arks	
					<u>- 1980</u>						
0-7	7.5YR 4/4	100					Loamy/Clay	ey			
7-14	2.5Y 4/1	80	5YR 3/4	20	С	M	Loamy/Clay	rey P	rominent redox	concentrations	
¹ Type: C=C	oncentration, D=Dep	letion, RM	=Reduced Matrix, I	MS=Mas	ked Sand	d Grains.	2Lc		Pore Lining, M		
Hydric Soil	Indicators:									tic Hydric Soils	
Histosol			Polyvalue B		-				luck (A10) (ML		
Histic E	oipedon (A2)		Thin Dark S					Coast	Prairie Redox (A16)	
Black Hi	istic (A3)		Loamy Muc	ky Miner	al (F1) (N	ILRA 13	6)	(MLF	(MLRA 147, 148)		
Hydroge	en Sulfide (A4)		Loamy Gley	ed Matri	x (F2)		X Piedmont Floodplain Soils (F19)			Soils (F19)	
Stratifie	d Layers (A5)		X Depleted Ma	atrix (F3))			(MLRA 136, 147)			
2 cm Mu	uck (A10) (LRR N)		Redox Dark	Surface	(F6)			Red Pa	Red Parent Material (F21) (outside MLRA 127, 147, 148) Very Shallow Dark Surface (F22)		
Deplete	d Below Dark Surface	e (A11)	Depleted Da	ark Surfa	ce (F7)			(out			
Thick Da	ark Surface (A12)		Redox Depr	essions	(F8)			Very S			
Sandy N	/lucky Mineral (S1)		Iron-Manga	nese Ma	sses (F12	2) (LRR I	I, Other (Explain in Remarks)			narks)	
Sandy G	Gleyed Matrix (S4)		MLRA 13	6)							
Sandy F	Redox (S5)		Umbric Surf	ace (F13	B) (MLRA	122, 13	6)	³ Indicators	of hydrophytic	vegetation and	
Stripped	l Matrix (S6)		Piedmont F	oodplain	Soils (F	19) (MLF				•	
Dark Su	rface (S7)		Red Parent	Material	(F21) (M	LRA 127	, 147, 148)	unless	disturbed or pr	oblematic.	
	Layer (if observed):										
Type:											
Depth (i	nches):						Hydric Soil	Present?	Yes X	No	
Remarks:											

WETLAND DETERMINATION DA			Requiremer	l #: 0710-xxxx, Exp: Pending nt Control Symbol EXEMPT: AR 335-15, paragraph 5-2a)
Project/Site: Carpenter Bottom Mitiga	ation Site	City/County: Gaston		Sampling Date: 7/12/19
Applicant/Owner: Wildlands Engin	eering, Inc.		State: NC	Sampling Point: DP4
Investigator(s): Kristi Suggs & Ian Eck	ardt	Section, Township, Range:	N/A	
Landform (hillside, terrace, etc.): Floo		Local relief (concave, convex, r		Slope (%): 0%
· · · <u> </u>	•			Datum: NAD 83
Subregion (LRR or MLRA): <u>LRR P, M</u>		Long	1.25974	
Soil Map Unit Name: Worsham loam	· · · · ·		NWI classific	
Are climatic / hydrologic conditions on t			No (If no	, explain in Remarks.)
Are Vegetation <u>X</u> , Soil, or	Hydrology signification	antly disturbed? Are "Normal Ci	rcumstances" presen	t? YesNo_>
Are Vegetation, Soil, or	Hydrologynaturall	y problematic? (If needed, expl	lain any answers in F	Remarks.)
SUMMARY OF FINDINGS – A	ttach site map shov	ving sampling point locatio	ns. transects. ir	nportant features. et
Wetland Hydrology Present? Remarks: Sampling point DP4 is representative	Yes <u>X</u> No	s located in an agricultural field prim	narlily used for hay pi	roduction.
HYDROLOGY				
Wetland Hydrology Indicators:				s (minimum of two required
Primary Indicators (minimum of one is		annly)	Surface Soil Cra	
X Surface Water (A1)	True Aquatic			· · /
		Plants (B14)		ated Concave Surface (B8)
High Water Table (A2)		Plants (B14) fide Odor (C1)	X Drainage Patter	ated Concave Surface (B8) ns (B10)
Saturation (A3)	Oxidized Rhiz	Plants (B14) fide Odor (C1) cospheres on Living Roots (C3)	X Drainage Patter Moss Trim Lines	ated Concave Surface (B8) ns (B10) s (B16)
Saturation (A3) Water Marks (B1)	Oxidized Rhiz Presence of F	Plants (B14) fide Odor (C1) cospheres on Living Roots (C3) Reduced Iron (C4)	X Drainage Patter Moss Trim Lines Dry-Season Wa	ated Concave Surface (B8) ns (B10) s (B16) ter Table (C2)
Saturation (A3) Water Marks (B1) Sediment Deposits (B2)	Oxidized Rhiz Presence of F Recent Iron R	Plants (B14) fide Odor (C1) cospheres on Living Roots (C3) Reduced Iron (C4) Reduction in Tilled Soils (C6)	X Drainage Patter Moss Trim Lines Dry-Season Wa X Crayfish Burrow	ated Concave Surface (B8) ns (B10) s (B16) ter Table (C2) s (C8)
Saturation (A3) Water Marks (B1)	Oxidized Rhiz Oxidized Rhiz Presence of F Recent Iron R Thin Muck Su	Plants (B14) fide Odor (C1) cospheres on Living Roots (C3) Reduced Iron (C4) Reduction in Tilled Soils (C6)	X Drainage Patter Moss Trim Lines Dry-Season Wa X Crayfish Burrow	ated Concave Surface (B8) ns (B10) s (B16) ter Table (C2) s (C8) le on Aerial Imagery (C9)

No ____ Depth (inches): ____

Depth (inches):

Depth (inches):

1

Remarks:
Surface water is from a floodplain seep.

Inundation Visible on Aerial Imagery (B7)

Yes X

Yes

Yes

_

No

Х

No X

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Water-Stained Leaves (B9)

Aquatic Fauna (B13)

Field Observations:

Surface Water Present?

(includes capillary fringe)

Water Table Present?

Saturation Present?

ENG FORM 6116-4-SG, JUL 2018

Yes X No

Shallow Aquitard (D3)

X FAC-Neutral Test (D5)

Wetland Hydrology Present?

Microtopographic Relief (D4)

Sampling Point: DP4

				3 ·
	Absolute	Dominant	Indicator	Deminence Test werkeheet
<u>Tree Stratum</u> (Plot size: <u>30</u>)	% Cover	Species?	Status	Dominance Test worksheet:
 Liquidambar styraciflua 2. 	10	Yes	FAC	Number of Dominant Species That Are OBL, FACW, or FAC: 4 (A)
3				Total Number of Dominant Species Across All Strata: <u>4</u> (B)
5. 6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 100.0% (A/B)
7.				Prevalence Index worksheet:
/:	10	=Total Cover		
EQ9/ of total action			2	
	<u>5</u> 20%	of total cover:	2	
Sapling/Shrub Stratum (Plot size: 15)	Ma a		FACW species $35 \times 2 = 70$
1. Cephalanthus occidentalis	15	Yes	OBL	FAC species 90 x 3 = 270
2. Fraxinus pennsylvanica	15	Yes	FACW	FACU species 7 $x 4 = 28$
3. Juglans nigra	5	No	FACU	UPL species x 5 =
4. Liquidambar styraciflua	5	No	FAC	Column Totals: 147 (A) 383 (B)
5				Prevalence Index = B/A =2.61
6				Hydrophytic Vegetation Indicators:
7				1 - Rapid Test for Hydrophytic Vegetation
8				X 2 - Dominance Test is >50%
9.				X 3 - Prevalence Index is $\leq 3.0^1$
	40	=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover: 2	20 20%	of total cover:	8	data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 5)				Problematic Hydrophytic Vegetation ¹ (Explain)
1. Juncus effusus	15	No	FACW	¹ Indicators of hydric soil and wetland hydrology must be
2. Microstegium vimineum	60	Yes	FAC	present, unless disturbed or problematic.
3. Persicaria lapathifolia	5	No	FACW	Definitions of Four Vegetation Strata:
4. Dichanthelium clandestinum	15	No	FAC	Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5. Eupatorium capillifolium	2	No	FACU	more in diameter at breast height (DBH), regardless of
6.				height.
7.				Sapling/Shrub – Woody plants, excluding vines, less
8.				than 3 in. DBH and greater than or equal to 3.28 ft
9.				(1 m) tall.
				Herb – All herbaceous (non-woody) plants, regardless
10 11.				of size, and woody plants less than 3.28 ft tall.
	97	=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover: 4	19 20%	of total cover:	20	height.
Woody Vine Stratum (Plot size: 5)				
3.				
5				Hydrophytic
		=Total Cover		Vegetation
50% of total cover:	20%	of total cover:		Present? Yes <u>X</u> No
Remarks: (Include photo numbers here or on a sepa				
Wetland is located in an agricultural field primarlily u	used for hay p	production.		

Depth Matrix (inches) Color (moist) % 0-6 10YR 3/2 9 6-14 10YR 4/3 7 6-14 10YR 4/3 7 9	Color (moist) 0 5YR 4/6 5 5YR 4/6	x Features % Ty 10 (25 (C M	Texture Loamy/Clayey Loamy/Clayey	Remarks Prominent redox concentrations Prominent redox concentrations		
0-6 10YR 3/2 9 6-14 10YR 4/3 7:	0 5YR 4/6 5 5YR 4/6		с м	Loamy/Clayey	Prominent redox concentrations		
6-14 10YR 4/3 7:	5 5YR 4/6						
Type: C=Concentration, D=Depletion Hydric Soil Indicators: Histosol (A1)			<u>с м</u> — — — — — — — — — — — — — — — — — — —	Loamy/Clayey	Prominent redox concentrations		
Hydric Soil Indicators: Histosol (A1)	, RM=Reduced Matrix, I						
Hydric Soil Indicators: Histosol (A1)	, RM=Reduced Matrix, I						
Hydric Soil Indicators: Histosol (A1)	, RM=Reduced Matrix, I						
Hydric Soil Indicators: Histosol (A1)	, RM=Reduced Matrix, I						
Hydric Soil Indicators: Histosol (A1)	, RM=Reduced Matrix, I	MS=Masked (
Hydric Soil Indicators: Histosol (A1)	, RM=Reduced Matrix, I	MS=Masked (
Hydric Soil Indicators: Histosol (A1)	, RM=Reduced Matrix, I	VISEN/Jacked		2,			
Histosol (A1)			Sand Grains.		: PL=Pore Lining, M=Matrix.		
	Debaselue D	alaur Cumfa a a			cators for Problematic Hydric Soils		
Histic Epipedon (A2)		elow Surface	. , .		2 cm Muck (A10) (MLRA 147)		
Disal (Listia (AQ)		urface (S9) (I			Coast Prairie Redox (A16)		
Black Histic (A3)	Loamy Mucky Mineral (F1) (MLRA 136) (MLRA 147, 148)						
Hydrogen Sulfide (A4)		Loamy Gleyed Matrix (F2) X Piedmont Floodplain Soils (I Depleted Matrix (F3) (MLRA 136, 147)					
Stratified Layers (A5)		. ,			(MLRA 136, 147)		
2 cm Muck (A10) (LRR N)	X Redox Dark	. ,		'	Red Parent Material (F21)		
Depleted Below Dark Surface (A1	· ·	ark Surface (F	-7)		(outside MLRA 127, 147, 148)		
Thick Dark Surface (A12)		essions (F8)			Very Shallow Dark Surface (F22)		
Sandy Mucky Mineral (S1)		nese Masses	(F12) (LRR I	N,(Other (Explain in Remarks)		
Sandy Gleyed Matrix (S4)	MLRA 13			<u> </u>			
Sandy Redox (S5)	Umbric Surf	ace (F13) (M	LRA 122, 130	6) ³ India	cators of hydrophytic vegetation and		
Stripped Matrix (S6)	Piedmont Fl	oodplain Soil	s (F19) (MLR	RA 148) V	vetland hydrology must be present,		
Dark Surface (S7)	Red Parent	Material (F21) (MLRA 127	', 147, 148) ι	unless disturbed or problematic.		
Restrictive Layer (if observed):							
Туре:							
Depth (inches):				Hydric Soil Prese	ent? Yes <u>X</u> No		
Remarks:							

U.S. Arm WETLAND DETERMINATION DATA See ERDC/EL TR-07-24;	SHEET – E		ains and Pied	•	Requirement	#: 0710-xxxx, Exp: Pending control Symbol EXEMPT: AR 335-15, paragraph 5-2a)		
Project/Site: Carpenter Bottom Mitigation	Site		City/Count	y: Gaston		Sampling Date: 7/12/19		
Applicant/Owner: Wildlands Engineering, Inc. State: NC Sampling Point: D5								
Investigator(s): Kristi Suggs Section, Township, Range: N/A								
Subregion (LRR or MLRA): LRR P, MLRA 136 Lat: 35.40849 Long: -81.25975 Datum: NAD 8								
Soil Map Unit Name: Worsham loam (WoA					NWI classifica			
Are climatic / hydrologic conditions on the si		-		Yes X	No (If no,	explain in Remarks.)		
Are Vegetation X, Soil , or Hydr	ology	significantly d	isturbed? A	re "Normal Circur	nstances" present	? Yes No X		
Are Vegetation, Soil, or Hydr	ology	naturally prob	lematic? (If	f needed, explain	any answers in Re	emarks.)		
SUMMARY OF FINDINGS - Attack	h site ma	ap showing	sampling po	oint locations	, transects, im	nportant features, etc.		
Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes X Yes X Yes X	No	Is the Samp within a We		Yes <u>X</u>	No		
HYDROLOGY								
Wetland Hydrology Indicators:	den de ste s d	11 41 4 1- 3		<u>Sec</u>	-	(minimum of two required)		
Primary Indicators (minimum of one is requ Surface Water (A1)			(P14)	<u> </u>	Surface Soil Crac			
High Water Table (A2)		e Aquatic Plants rogen Sulfide O	. ,		Sparsely Vegetated Concave Surface (B8) Drainage Patterns (B10)			
X Saturation (A3)		-	eres on Living Ro	oots (C3)				
Water Marks (B1)		ence of Reduce	-		Dry-Season Wate			
Sediment Deposits (B2)			ion in Tilled Soils	s (C6) X	Crayfish Burrows			
Drift Deposits (B3)	Thin	Muck Surface	(C7)		Saturation Visible on Aerial Imagery (C9)			
Algal Mat or Crust (B4)	Othe	er (Explain in Re	emarks)		Stunted or Stress	sed Plants (D1)		
Iron Deposits (B5)				Х	Geomorphic Posi	ition (D2)		
Inundation Visible on Aerial Imagery (E	37)				Shallow Aquitard			
Water-Stained Leaves (B9)					Microtopographic			
Aquatic Fauna (B13)				<u>X</u>	FAC-Neutral Test	t (D5)		
Field Observations:								
Surface Water Present? Yes	No <u>X</u>	Depth (incl						
Water Table Present? Yes	No <u>X</u>	Depth (incl						
Saturation Present? Yes X	No	Depth (incl	nes): <u>14</u>	Wetland Hydr	ology Present?	Yes X No		
(includes capillary fringe)	opitoria	معام معامل	o provincia la	entione) if and the				
Describe Recorded Data (stream gauge, m	ionitoring W	en, aenai prioto	s, previous insp	eulons), il avallat	שוע.			
Remarks: Soil saturation present within the auger hol	e from 0 - 1	4 inches below	ground surface.					

Sampling Point: D5

Tree Stratum (Plot size:)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1				Number of Dominant Species
2				That Are OBL, FACW, or FAC: <u>5</u> (A)
3 4.				Total Number of Dominant Species Across All Strata: 5 (B)
5.				
6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 100.0% (A/B)
7.				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
50% of total cover:		of total cover:		OBL species 7 x 1 = 7
Sapling/Shrub Stratum (Plot size: 15)				FACW species 75 x 2 = 150
1. Acer rubrum	5	Yes	FAC	FAC species 22 x 3 = 66
2. Fraxinus pennsylvanica	5	Yes	FACW	FACU species 5 x 4 = 20
3.				UPL species 0 x 5 = 0
4.				Column Totals: 109 (A) 243 (B)
5.				Prevalence Index = B/A = 2.23
6.				Hydrophytic Vegetation Indicators:
7.				1 - Rapid Test for Hydrophytic Vegetation
8.				X 2 - Dominance Test is >50%
9.				X 3 - Prevalence Index is $\leq 3.0^{1}$
· · · · · · · · · · · · · · · · · · ·	10	=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover: 5			0	data in Remarks or on a separate sheet)
	2070	of total cover:	2	Problematic Hydrophytic Vegetation ¹ (Explain)
Herb Stratum (Plot size: 5)	45	No.5		
1. Eupatorium perfoliatum	15	Yes	FACW	¹ Indicators of hydric soil and wetland hydrology must be
2. Juncus effusus	40	Yes	FACW	present, unless disturbed or problematic.
3. Dichanthelium clandestinum	15	Yes	FAC	Definitions of Four Vegetation Strata:
4. Persicaria lapathifolia	5	No	FACW	Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5. <u>Helenium flexuosum</u>	2	No	FAC	more in diameter at breast height (DBH), regardless of height.
6. Cyperus strigosus	10	No	FACW	noight.
7. Juncus articulatus	5	No	OBL	Sapling/Shrub – Woody plants, excluding vines, less
8. Ageratina altissima	5	No	FACU	than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
9. Carex lurida	2	No	OBL	
10 11.				Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
	99	=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover: 50		of total cover:	20	height.
Woody Vine Stratum (Plot size:)	2070		20	
· · · · · · · · · · · · · · · · · · ·				
1				
2				
3.				
4				
5				Hydrophytic
		=Total Cover		Vegetation
50% of total cover:	20%	of total cover:		Present?
Remarks: (Include photo numbers here or on a separ	ate sheet.)			

Color (moist) % Color (moist) % Type ¹ Loc ² Texture Remarks 0-4 5Y 4/1 85 5YR 4/6 15 C M Loamy/Clayey Prominent redox cond 4-14 10GY 4/1 90 7.5YR 5/8 10 C M Loamy/Clayey Prominent redox cond 4-14 10GY 4/1 90 7.5YR 5/8 10 C M Loamy/Clayey Prominent redox cond 4-14 10GY 4/1 90 7.5YR 5/8 10 C M Loamy/Clayey Prominent redox cond 4-14 10GY 4/1 90 7.5YR 5/8 10 C M Loamy/Clayey Prominent redox cond 4-14 10GY 4/1 90 7.5YR 5/8 10 C M Loamy/Clayey Prominent redox cond 4-14 10GY 4/1 90 7.5YR 5/8 10 C M Loamy/Clayey Prominent redox cond ** ** ** ** ** ** ** ** ** ** ** * * * * <t< th=""><th>-</th><th>•</th><th></th><th>oth needed to doc</th><th></th><th></th><th>alor or co</th><th>onfirm the ab</th><th>sence of Ind</th><th>licators.)</th><th></th></t<>	-	•		oth needed to doc			alor or co	onfirm the ab	sence of Ind	licators.)	
0-4 5Y 4/1 85 5YR 4/6 15 C M Loamy/Clayey Prominent redox cond 4-14 10GY 4/1 90 7.5YR 5/8 10 C M Loamy/Clayey Prominent redox cond 4-14 10GY 4/1 90 7.5YR 5/8 10 C M Loamy/Clayey Prominent redox cond 4 10GY 4/1 90 7.5YR 5/8 10 C M Loamy/Clayey Prominent redox cond 4 10GY 4/1 90 7.5YR 5/8 10 C M Loamy/Clayey Prominent redox cond 4 10GY 4/1 90 7.5YR 5/8 10 C M Loamy/Clayey Prominent redox cond 4 10GY 4/1 90 7.5YR 5/8 10 C M Loamy/Clayey Prominent redox cond 4 10GY 4/1 90 7.5YR 5/8 10 C M Loamy/Clayey Prominent redox cond 4 10GY 4/1 90 7.5YR 5/8 10 C Indicators Indicators Indicators Indicators Indicators Indicators	· · · · · · · · · · · · · · · · · · ·	Matrix					1 2	- (5	
4-14 10GY 4/1 90 7.5YR 5/8 10 C M Loamy/Clayey Prominent redox cond 4-14 10GY 4/1 90 7.5YR 5/8 10 C M Loamy/Clayey Prominent redox cond 4-14 10GY 4/1 90 7.5YR 5/8 10 C M Loamy/Clayey Prominent redox cond	iches)	Color (moist)	%	Color (moist)	%	Туре	Loc	Texture Remarks			
Image: Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ² Location: PL=Pore Lining, M=Matterial (F1) Hydric Soil Indicators: Indicators for Problematic Hydric Soil Indicators Indicators for Problematic Hydric Soil Indicators (S8) (MLRA 147, 148) 2 cm Muck (A10) (MLRA 147, 148) Histic Epipedon (A2) Thin Dark Surface (S9) (MLRA 147, 148) 2 cm Muck (A10) (MLRA 147, 148) Coast Prairie Redox (A16) Black Histic (A3) Loamy Mucky Mineral (F1) (MLRA 136) (MLRA 147, 148) Coast Prairie Redox (A16) Hydrogen Sulfide (A4) X Loamy Gleyed Matrix (F2) Piedmont Floodplain Soils Piedmont Floodplain Soils Stratified Layers (A5) X Depleted Matrix (F3) (MLRA 136, 147) Red Parent Material (F21) 2 cm Muck (A10) (LRR N) Redox Dark Surface (F7) Red Parent Material (F21) (outside MLRA 127, 147, 148) Thick Dark Surface (A12) Redox Depressions (F8) Very Shallow Dark Surface Very Shallow Dark Surface Sandy Mucky Mineral (S1) Iron-Manganese Masses (F12) (LRR N, Sindicators of hydrophytic vege Sindicators of hydrophytic vege Stripped Matrix (S6) Piedmont Floodplain Soils (F19) (MLRA 148) wetland hydrology must be unless disturbed or proble Bark Surface (S7) Red Parent Material (F21) (MLRA 127, 147, 148) unle	0-4	5Y 4/1	85	5YR 4/6	15	С	М	Loamy/Clayey Prominent redox concentration			
Hydric Soil Indicators: Indicators for Problematic Hy Histosol (A1) Polyvalue Below Surface (S8) (MLRA 147, 148) 2 cm Muck (A10) (MLRA 147, 148) Histic Epipedon (A2) Thin Dark Surface (S9) (MLRA 147, 148) Coast Prairie Redox (A16) Black Histic (A3) Loamy Mucky Mineral (F1) (MLRA 136) (MLRA 147, 148) Hydrogen Sulfide (A4) X Loamy Gleyed Matrix (F2) Piedmont Floodplain Soils Stratified Layers (A5) X Depleted Matrix (F3) (MLRA 136, 147) 2 cm Muck (A10) (LRR N) Redox Dark Surface (F6) Red Parent Material (F21) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) (outside MLRA 127, 142) Thick Dark Surface (A12) Redox Depressions (F8) Very Shallow Dark Surface Sandy Mucky Mineral (S1) Iron-Manganese Masses (F12) (LRR N, Other (Explain in Remarks Sandy Redox (S5) Umbric Surface (F13) (MLRA 122, 136) ³ Indicators of hydrophytic vege Stripped Matrix (S6) Piedmont Floodplain Soils (F19) (MLRA 148) unless disturbed or problem Dark Surface (S7) Red Parent Material (F21) (MLRA 127, 147, 148) unless disturbed or problem	4-14	10GY 4/1	90	7.5YR 5/8	10	C	M	Loamy/Cla	yey P	rominent redox	concentrations
Hydric Soil Indicators: Indicators for Problematic Hy Histosol (A1) Polyvalue Below Surface (S8) (MLRA 147, 148) 2 cm Muck (A10) (MLRA 147, 148) Histic Epipedon (A2) Thin Dark Surface (S9) (MLRA 147, 148) Coast Prairie Redox (A16) Black Histic (A3) Loamy Mucky Mineral (F1) (MLRA 136) (MLRA 147, 148) Hydrogen Sulfide (A4) X Loamy Gleyed Matrix (F2) Piedmont Floodplain Soils Stratified Layers (A5) X Depleted Matrix (F3) (MLRA 136, 147) 2 cm Muck (A10) (LRR N) Redox Dark Surface (F6) Red Parent Material (F21) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) (outside MLRA 127, 147) Thick Dark Surface (A12) Redox Depressions (F8) Very Shallow Dark Surface Sandy Mucky Mineral (S1) Iron-Manganese Masses (F12) (LRR N, Other (Explain in Remarks Sandy Redox (S5) Umbric Surface (F13) (MLRA 122, 136) ³ Indicators of hydrophytic vege Stripped Matrix (S6) Piedmont Floodplain Soils (F19) (MLRA 148) wetland hydrology must be Dark Surface (S7) Red Parent Material (F21) (MLRA 127, 147, 148) unless disturbed or problem											
Histosol (A1)Polyvalue Below Surface (S8) (MLRA 147, 148)2 cm Muck (A10) (MLRA 147)Histic Epipedon (A2)Thin Dark Surface (S9) (MLRA 147, 148)Coast Prairie Redox (A16)Black Histic (A3)Loamy Mucky Mineral (F1) (MLRA 136)(MLRA 147, 148)Hydrogen Sulfide (A4)XLoamy Gleyed Matrix (F2)Piedmont Floodplain SoilsStratified Layers (A5)XDepleted Matrix (F3)(MLRA 136, 147)2 cm Muck (A10) (LRR N)Redox Dark Surface (F6)Red Parent Material (F21)Depleted Below Dark Surface (A11)Depleted Dark Surface (F7)(outside MLRA 127, 143)Thick Dark Surface (A12)Redox Depressions (F8)Very Shallow Dark SurfaceSandy Mucky Mineral (S1)Iron-Manganese Masses (F12) (LRR N, Sandy Gleyed Matrix (S4)Other (Explain in Remarks wetland hydrology must be unless disturbed or problemSandy Redox (S5)Umbric Surface (F13) (MLRA 122, 136) ³ Indicators of hydrophytic vege wetland hydrology must be unless disturbed or problemRestrictive Layer (if observed):Red Parent Material (F21) (MLRA 127, 147, 148)unless disturbed or problem			etion, RM	=Reduced Matrix, N	MS=Mas	ked Sand	l Grains.	2L			
Histic Epipedon (A2)Thin Dark Surface (S9) (MLRA 147, 148)Coast Prairie Redox (A16)Black Histic (A3)Loamy Mucky Mineral (F1) (MLRA 136)(MLRA 147, 148)Hydrogen Sulfide (A4)X Loamy Gleyed Matrix (F2)Piedmont Floodplain SoilsStratified Layers (A5)X Depleted Matrix (F3)(MLRA 136, 147)2 cm Muck (A10) (LRR N)Redox Dark Surface (F6)Red Parent Material (F21)Depleted Below Dark Surface (A11)Depleted Dark Surface (F7)(outside MLRA 127, 147)Thick Dark Surface (A12)Redox Depressions (F8)Very Shallow Dark SurfaceSandy Mucky Mineral (S1)Iron-Manganese Masses (F12) (LRR N, Sandy Gleyed Matrix (S4)Other (Explain in Remarks Stripped Matrix (S6)3Indicators of hydrophytic vege wetland hydrology must be unless disturbed or problemStripped Matrix (S6)Piedmont Floodplain Soils (F19) (MLRA 127, 147, 148)unless disturbed or problemRestrictive Layer (if observed):Red Parent Material (F21) (MLRA 127, 147, 148)unless disturbed or problem	•										•
Black Histic (A3)Loamy Mucky Mineral (F1) (MLRA 136)(MLRA 147, 148)Hydrogen Sulfide (A4)XLoamy Gleyed Matrix (F2)Piedmont Floodplain SoilsStratified Layers (A5)XDepleted Matrix (F3)(MLRA 136, 147)2 cm Muck (A10) (LRR N)Redox Dark Surface (F6)Red Parent Material (F21)Depleted Below Dark Surface (A11)Depleted Dark Surface (F7)(outside MLRA 127, 147)Thick Dark Surface (A12)Redox Depressions (F8)Very Shallow Dark SurfaceSandy Mucky Mineral (S1)Iron-Manganese Masses (F12) (LRR N, MLRA 136)Other (Explain in RemarksSandy Redox (S5)Umbric Surface (F13) (MLRA 122, 136) ³ Indicators of hydrophytic vege wetland hydrology must be unless disturbed or problemStripped Matrix (S6)Piedmont Floodplain Soils (F19) (MLRA 127, 147, 148)unless disturbed or problemRestrictive Layer (if observed):Red Parent Material (F21) (MLRA 127, 147, 148)unless disturbed or problem					•						
Hydrogen Sulfide (A4) X Loamy Gleyed Matrix (F2) Piedmont Floodplain Soils Stratified Layers (A5) X Depleted Matrix (F3) (MLRA 136, 147) 2 cm Muck (A10) (LRR N) Redox Dark Surface (F6) Red Parent Material (F21) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) (outside MLRA 127, 147) Thick Dark Surface (A12) Redox Depressions (F8) Very Shallow Dark Surface Sandy Mucky Mineral (S1) Iron-Manganese Masses (F12) (LRR N, Other (Explain in Remarks) Sandy Redox (S5) Umbric Surface (F13) (MLRA 122, 136) ³ Indicators of hydrophytic vege Stripped Matrix (S6) Piedmont Floodplain Soils (F19) (MLRA 127, 147, 148) unless disturbed or problem Dark Surface (S7) Red Parent Material (F21) (MLRA 127, 147, 148) unless disturbed or problem											
Stratified Layers (A5)XDepleted Matrix (F3)(MLRA 136, 147)2 cm Muck (A10) (LRR N)Redox Dark Surface (F6)Red Parent Material (F21)Depleted Below Dark Surface (A11)Depleted Dark Surface (F7)(outside MLRA 127, 147)Thick Dark Surface (A12)Redox Depressions (F8)Very Shallow Dark SurfaceSandy Mucky Mineral (S1)Iron-Manganese Masses (F12) (LRR N, Sandy Gleyed Matrix (S4)Other (Explain in Remarks)Sandy Redox (S5)Umbric Surface (F13) (MLRA 122, 136)3Indicators of hydrophytic vege wetland hydrology must be unless disturbed or problemStripped Matrix (S6)Piedmont Floodplain Soils (F19) (MLRA 127, 147, 148)unless disturbed or problemRestrictive Layer (if observed):Red Parent Material (F21) (MLRA 127, 147, 148)unless disturbed or problem	_										
2 cm Muck (A10) (LRR N) Redox Dark Surface (F6) Red Parent Material (F21) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) (outside MLRA 127, 147) Thick Dark Surface (A12) Redox Depressions (F8) Very Shallow Dark Surface Sandy Mucky Mineral (S1) Iron-Manganese Masses (F12) (LRR N, Other (Explain in Remarks) Sandy Gleyed Matrix (S4) MLRA 136) Other (Explain in Remarks) Stripped Matrix (S6) Piedmont Floodplain Soils (F19) (MLRA 148) wetland hydrology must be unless disturbed or problem Dark Surface (S7) Red Parent Material (F21) (MLRA 127, 147, 148) unless disturbed or problem	_ · ·	. ,		X Loamy Gley						Soils (F19)	
Depleted Below Dark Surface (A11)Depleted Dark Surface (F7)(outside MLRA 127, 14)Thick Dark Surface (A12)Redox Depressions (F8)Very Shallow Dark SurfaceSandy Mucky Mineral (S1)Iron-Manganese Masses (F12) (LRR N, MLRA 136)Other (Explain in Remarks)Sandy Redox (S5)Umbric Surface (F13) (MLRA 122, 136)3Indicators of hydrophytic vege wetland hydrology must be unless disturbed or problemStripped Matrix (S6)Piedmont Floodplain Soils (F19) (MLRA 127, 147, 148)unless disturbed or problemRestrictive Layer (if observed):Sandy Cleved):Sandy Redox (S5)Sandy Redox (S5)	Stratified Lay	yers (A5)		X Depleted Ma	(
Thick Dark Surface (A12) Redox Depressions (F8) Very Shallow Dark Surface Sandy Mucky Mineral (S1) Iron-Manganese Masses (F12) (LRR N, Other (Explain in Remarks Sandy Gleyed Matrix (S4) MLRA 136) Other (Explain in Remarks Sandy Redox (S5) Umbric Surface (F13) (MLRA 122, 136) ³ Indicators of hydrophytic vege Stripped Matrix (S6) Piedmont Floodplain Soils (F19) (MLRA 148) wetland hydrology must be Dark Surface (S7) Red Parent Material (F21) (MLRA 127, 147, 148) unless disturbed or problem	2 cm Muck (A10) (LRR N)		Redox Dark	Surface	(F6)			Red P	arent Material (F	-21)
Sandy Mucky Mineral (S1) Iron-Manganese Masses (F12) (LRR N, Other (Explain in Remarks Sandy Gleyed Matrix (S4) MLRA 136) 3Indicators of hydrophytic vege Sandy Redox (S5) Umbric Surface (F13) (MLRA 122, 136) 3Indicators of hydrophytic vege Stripped Matrix (S6) Piedmont Floodplain Soils (F19) (MLRA 148) wetland hydrology must be Dark Surface (S7) Red Parent Material (F21) (MLRA 127, 147, 148) unless disturbed or problem	Depleted Be	low Dark Surface	e (A11)	Depleted Da	ark Surfa	ce (F7)		(outside MLRA 127, 147, 148)			
Sandy Gleyed Matrix (S4) MLRA 136) Sandy Redox (S5) Umbric Surface (F13) (MLRA 122, 136) Stripped Matrix (S6) Piedmont Floodplain Soils (F19) (MLRA 148) Dark Surface (S7) Red Parent Material (F21) (MLRA 127, 147, 148) Restrictive Layer (if observed): Image: Stripped strippe	Thick Dark S	Surface (A12)		Redox Depr	essions	(F8)		Very Shallow Dark Surface (F22)			
Sandy Redox (S5) Umbric Surface (F13) (MLRA 122, 136) ³ Indicators of hydrophytic vege Stripped Matrix (S6) Piedmont Floodplain Soils (F19) (MLRA 148) wetland hydrology must be Dark Surface (S7) Red Parent Material (F21) (MLRA 127, 147, 148) unless disturbed or problem	Sandy Muck	y Mineral (S1)		Iron-Mangar	nese Mas	sses (F12	2) (LRR M	١,	Other	(Explain in Rem	arks)
Stripped Matrix (S6) Piedmont Floodplain Soils (F19) (MLRA 148) wetland hydrology must be unless disturbed or problem Dark Surface (S7) Red Parent Material (F21) (MLRA 127, 147, 148) unless disturbed or problem Restrictive Layer (if observed): Image: Comparison of the structure of the struc	Sandy Gleye	ed Matrix (S4)		MLRA 13	6)						
Dark Surface (S7) Red Parent Material (F21) (MLRA 127, 147, 148) unless disturbed or problem Restrictive Layer (if observed): Image: Comparison of the second						122, 136	5)	³ Indicators	of hydrophytic	egetation and	
Restrictive Layer (if observed):	Stripped Matrix (S6) Piedmont Floodplain Soils (F19) (ML				19) (MLR	.RA 148) wetland hydrology must be preser					
	Dark Surface	e (S7)		Red Parent	Material	(F21) (M	LRA 127	, 147, 148)	unless	disturbed or pro	oblematic.
Туре:	estrictive Laye	er (if observed):									
	Туре:										
Depth (inches): Yes X N	Depth (inche	es):						Hydric Soi	I Present?	Yes X	No
Remarks:	emarks:										

U.S. Army (WETLAND DETERMINATION DATA SH See ERDC/EL TR-07-24; the	OMB Control #: 0710-xxxx, Exp: Pending Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)							
Project/Site: Carpenter Bottom Mitigation Site	Sampling Date: 7/12/19							
Applicant/Owner: Wildlands Engineering, I	State: NC Sampling Point: D6							
Investigator(s): Kristi Suggs & Ian Eckardt	N/A							
Landform (hillside, terrace, etc.): Floodplain	Local relief (concave, convex, i	none): none Slope (%): <1%						
Subregion (LRR or MLRA): LRR P, MLRA 136		31.25977 Datum: NAD 83						
Soil Map Unit Name: Worsham loam (WoA)		NWI classification: N/A						
	turnical for this time of year?							
Are climatic / hydrologic conditions on the site t		No (If no, explain in Remarks.)						
Are Vegetation X, Soil , or Hydrolo		rcumstances" present? Yes No X						
Are Vegetation, Soil, or Hydrolo	gynaturally problematic? (If needed, exp	lain any answers in Remarks.)						
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, et								
Hydric Soil Present?YWetland Hydrology Present?YRemarks:Y	Yes No X Is the Sampled Area Yes No X within a Wetland? Yes No X X Yes No X X Sampling point located in an agricultural field primar	Yes <u>No X</u>						
Wetland Hydrology Indicators:		Secondary Indicators (minimum of two required)						
Primary Indicators (minimum of one is require	d; check all that apply)	Surface Soil Cracks (B6)						
Surface Water (A1)	True Aquatic Plants (B14)	Sparsely Vegetated Concave Surface (B8)						
High Water Table (A2)	Hydrogen Sulfide Odor (C1)	Drainage Patterns (B10)						
Saturation (A3)	Oxidized Rhizospheres on Living Roots (C3)	Moss Trim Lines (B16)						
Water Marks (B1)	Presence of Reduced Iron (C4)	Dry-Season Water Table (C2)						
Sediment Deposits (B2)	Recent Iron Reduction in Tilled Soils (C6)	Crayfish Burrows (C8)						
Drift Deposits (B3)	Thin Muck Surface (C7)	Saturation Visible on Aerial Imagery (C9)						
Algal Mat or Crust (B4)	Other (Explain in Remarks)	Stunted or Stressed Plants (D1)						
Iron Deposits (B5)		X Geomorphic Position (D2)						
Inundation Visible on Aerial Imagery (B7)		Shallow Aquitard (D3)						
Water-Stained Leaves (B9)		Microtopographic Relief (D4)						

Field	Observations:

Aquatic Fauna (B13)

Field Observations:									
Surface Water Present?	Yes	<u>No X</u>	Depth (inches):						
Water Table Present?	Yes	No X	Depth (inches):						
Saturation Present?	Yes	No X	Depth (inches):	Wetland Hydrology Present?	Yes				
(includes capillary fringe)									
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:									

Remarks:

Located in floodplain adjacent to Wetland F.

No X

FAC-Neutral Test (D5)

Sampling Point: D6

	Absolute	Dominant	Indicator	
Tree Stratum (Plot size:)	% Cover	Species?	Status	Dominance Test worksheet:
1				Number of Dominant Species
2				That Are OBL, FACW, or FAC: 0 (A)
3.				Total Number of Dominant
4.				Species Across All Strata: 1 (B)
5				Percent of Dominant Species
6.				That Are OBL, FACW, or FAC: 0.0% (A/B)
7				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
50% of total cover:	20%	of total cover:		OBL species 0 x 1 = 0
Sapling/Shrub Stratum (Plot size:)				FACW species 7 x 2 = 14
1.				FAC species 10 x 3 = 30
2.				FACU species 83 x 4 = 332
3.				UPL species $0 \times 5 = 0$
A				Column Totals: 100 (A) 376 (B)
5.				Prevalence Index = $B/A = 3.76$
				Hydrophytic Vegetation Indicators:
6.				
7.				1 - Rapid Test for Hydrophytic Vegetation
8.				2 - Dominance Test is >50%
9				3 - Prevalence Index is ≤3.0 ¹
		=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover:	20%	of total cover:		data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 5)				Problematic Hydrophytic Vegetation ¹ (Explain)
1. Schedonorus arundinaceus	80	Yes	FACU	¹ Indicators of hydric soil and wetland hydrology must be
2. Eupatorium capillifolium	3	No	FACU	present, unless disturbed or problematic.
3. Juncus effusus	7	No	FACW	Definitions of Four Vegetation Strata:
4. Dichanthelium clandestinum	10	No	FAC	Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5.				more in diameter at breast height (DBH), regardless of
6.				height.
7.				Sapling/Shrub – Woody plants, excluding vines, less
8.				than 3 in. DBH and greater than or equal to 3.28 ft
9.				(1 m) tall.
10.				Herb – All herbaceous (non-woody) plants, regardless
11.				of size, and woody plants less than 3.28 ft tall.
· · · ·	100	=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover: 50			20	height.
	<u> </u>	of total cover:	20	
Woody Vine Stratum (Plot size:)				
1				
2.				
3				
4.				
5				Hydrophytic
	:	=Total Cover		Vegetation
50% of total cover:	20%	of total cover:		Present? Yes No X
Remarks: (Include photo numbers here or on a sepa	rate sheet.)			
Sampling point is located in an agricultural field prima	,	r hay productio	on.	
	-			

SOIL

Depth	Matrix		Redo	x Featur	es					
inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	<u> </u>	Re	marks
0-3	7.5YR 4/4	100					Loamy/Cla	уеу		
3-14	5YR 4/6	100					Loamy/Cla	iyey		
					_	:				
						·				
	oncentration, D=Dep	letion, RM	=Reduced Matrix, N	/IS=Mas	ked Sanc	l Grains.	² L		=Pore Lining,	
-	Indicators:									natic Hydric Soils
Histosol			Polyvalue B		• • •				Muck (A10) (I	
Histic E	pipedon (A2)		Thin Dark S	urface (S	59) (MLR	A 147, 14	18)	Coas	t Prairie Redo	x (A16)
Black Hi	istic (A3)		Loamy Mucl	ky Miner	al (F1) (₩	ILRA 136	5)	(MI	RA 147, 148)	
Hydroge	en Sulfide (A4)		Loamy Gley	ed Matri	x (F2)			Piedr	nont Floodplai	n Soils (F19)
Stratified	d Layers (A5)		Depleted Ma	atrix (F3)				(MI	RA 136, 147)	
2 cm Mı	uck (A10) (LRR N)		Redox Dark	Surface	(F6)		Red Parent Material (F21)			
Deplete	d Below Dark Surface	e (A11)	Depleted Da	irk Surfa	ce (F7)		(outside MLRA 127, 147, 148			
Thick Da	ark Surface (A12)		Redox Depr	essions	(F8)			Very	Shallow Dark	Surface (F22)
Sandy Mucky Mineral (S1) Iron-Manganese Masses (F12) (LRI					2) (LRR N	l,	Othe	· (Explain in R	emarks)	
Sandy G	Bleyed Matrix (S4)		MLRA 13	6)						
Sandy F	Redox (S5)		Umbric Surf	ace (F13	3) (MLRA	122, 136)	³ Indicator	s of hydrophyt	ic vegetation and
Stripped	l Matrix (S6)		Piedmont Fl	oodplair	n Soils (F	19) (MLR	A 148)	wetla	nd hydrology i	must be present,
Dark Su	rface (S7)		Red Parent	Material	(F21) (M	LRA 127,	147, 148)	unles	s disturbed or	problematic.
Restrictive	Layer (if observed):									
Type:	,									
	nches):						Livelui e C e	il Present?	Yes	<u>No X</u>

No hydric soil indicators present.

U.S. Army WETLAND DETERMINATION DATA SI See ERDC/EL TR-07-24; ti	ains and Piedmont Region	OMB Control #: 0710-xxxx, Exp: Pending Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)						
oject/Site: Carpenter Bottom Mitigation Site City/County: Gaston Sampling Date: 7/								
Applicant/Owner: Wildlands Engineering								
Investigator(s): Kristi Suggs & Ian Eckardt								
Landform (hillside, terrace, etc.): Floodplair								
Subregion (LRR or MLRA): LRR P, MLRA 136 Lat: 35.4097 Long: -81.25977 Datum: NAD 8 Soil Map Unit Name: Worsham loam (WoA) NWI classification: N/A								
			<u> </u>					
Are climatic / hydrologic conditions on the site			No (If no, explain in Remarks.)					
Are Vegetation X, Soil, or Hydro			nstances" present? Yes <u>No X</u>					
Are Vegetation, Soil, or Hydro	logynaturally probl	ematic? (If needed, explain	any answers in Remarks.)					
SUMMARY OF FINDINGS – Attach	site map showing s	sampling point locations	, transects, important features, etc.					
Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes X No Yes X No Yes X No	Is the Sampled Area within a Wetland?	Yes X No					
HYDROLOGY Wetland Hydrology Indicators:		Sec	condary Indicators (minimum of two required)					
Primary Indicators (minimum of one is require	red; check all that apply)		Surface Soil Cracks (B6)					
X Surface Water (A1)	True Aquatic Plants		Sparsely Vegetated Concave Surface (B8)					
High Water Table (A2)	Hydrogen Sulfide Oc		Drainage Patterns (B10)					
Saturation (A3)		res on Living Roots (C3)	Moss Trim Lines (B16)					
Water Marks (B1) Sediment Deposits (B2)	Presence of Reduce	on in Tilled Soils (C6)	Dry-Season Water Table (C2) Crayfish Burrows (C8)					
Drift Deposits (B3)	Thin Muck Surface (Saturation Visible on Aerial Imagery (C9)					
Algal Mat or Crust (B4)	Other (Explain in Re		Stunted or Stressed Plants (D1)					
Iron Deposits (B5)			Geomorphic Position (D2)					
Inundation Visible on Aerial Imagery (B7	")		Shallow Aquitard (D3)					
Water-Stained Leaves (B9)			Microtopographic Relief (D4)					
Aquatic Fauna (B13)		<u>X</u>	FAC-Neutral Test (D5)					
Field Observations:								
Surface Water Present? Yes X	No Depth (inch	·						
Water Table Present? Yes	No X Depth (inch							
Saturation Present? Yes No X Depth (inches): Wetland Hydrology Present? Yes X No								
(includes capillary fringe) Describe Recorded Data (stream gauge, mo	nitoring well, aerial photos	s. previous inspections) if availab	ble:					
		, p						
Remarks: Standing water present in wetland; howver, r	no surface water, water ta	ble, or soil saturation present in a	auger hole.					

Sampling Point: D7

	Absolute	Dominant	Indicator	
Tree Stratum (Plot size:)	% Cover	Species?	Status	Dominance Test worksheet:
1				Number of Dominant Species
2				That Are OBL, FACW, or FAC:3 (A)
·				Total Number of Dominant Species Across All Strata: 3 (B)
4 5.				· · · · · · · · · · · · · · · · · · ·
5				Percent of Dominant Species That Are OBL, FACW, or FAC: 100.0% (A/B)
7.				Prevalence Index worksheet:
···		=Total Cover		Total % Cover of: Multiply by:
- 50% of total cover:		of total cover:		$\frac{1}{\text{OBL species}} \frac{1}{10} \frac{1}{\text{x 1} = 10}$
Sapling/Shrub Stratum (Plot size: 15)				FACW species $45 \times 2 = 90$
1. Fraxinus pennsylvanica	5	Yes	FACW	FAC species $43 \times 3 = 129$
2. Acer rubrum	1	No	FAC	FACU species $2 \times 4 = 8$
3.				UPL species $0 \times 5 = 0$
4.				Column Totals: 100 (A) 237 (B)
5.				Prevalence Index = B/A = 2.37
6.				Hydrophytic Vegetation Indicators:
7.				1 - Rapid Test for Hydrophytic Vegetation
8.				X 2 - Dominance Test is >50%
9.				X 3 - Prevalence Index is $≤3.0^1$
	6	=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover: 3	20%	of total cover:	2	data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 5)				Problematic Hydrophytic Vegetation ¹ (Explain)
1. Carex lurida	10	No	OBL	¹ Indicators of hydric soil and wetland hydrology must be
2. Juncus effusus	35	Yes	FACW	present, unless disturbed or problematic.
3. Helenium flexuosum	6	No	FAC	Definitions of Four Vegetation Strata:
4. Dichanthelium clandestinum	35	Yes	FAC	Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5. Xanthium strumarium	1	No	FAC	more in diameter at breast height (DBH), regardless of
6. Eupatorium pilosum	3	No	FACW	height.
7. Eupatorium capillifolium	2	No	FACU	Sapling/Shrub – Woody plants, excluding vines, less
8. Persicaria lapathifolia	2	No	FACW	than 3 in. DBH and greater than or equal to 3.28 ft
9.				(1 m) tall.
10				Herb – All herbaceous (non-woody) plants, regardless
11				of size, and woody plants less than 3.28 ft tall.
	94	=Total Cover	_	Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover: 47	20%	of total cover:	19	height.
Woody Vine Stratum (Plot size:)				
1				
2				
3.				
4				
5				Hydrophytic
_	:	=Total Cover		Vegetation
50% of total cover:	20%	of total cover:		Present? Yes X No
Remarks: (Include photo numbers here or on a separa	ate sheet.)			
Located in an agriculatural floodplain primarily used for	or hay produ	uction.		

Depth	Matrix		Redo	x Featur	es					
inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Rema	rks
0-6	2.5YR 3/2	95	7.5YR 4/6	5	С	PL	Loamy/Clay	vey Pr	ominent redox o	concentrations
6-10	2.5YR 3/2	50	7.5YR 4/6	50	С	PL/M	Loamy/Clay	vey Pr	ominent redox o	concentrations
10-14	2.5YR 3/2	30	7.5YR 4/6	70	С	М	Loamy/Clay	vey Pr	ominent redox o	concentrations
Type: C=Co	ncentration, D=Depl	letion, RM	Reduced Matrix, N	//S=Mas	ked Sand	d Grains.	2Lc		Pore Lining, M= for Problemati	
Histosol			Polyvalue B	elow Su	face (S8) (MLRA	147, 148)		luck (A10) (MLF	
Histic Ep	ipedon (A2)		Thin Dark S		,	, .			Prairie Redox (A	
Black His	stic (A3)		Loamy Mucl	ky Miner	al (F1) (N	ILRA 136	6)	(MLF	RA 147, 148)	
	n Sulfide (A4)		Loamy Gley					•	ont Floodplain S	oils (F19)
_ · ·	Layers (A5)		Depleted Ma		• •				RA 136, 147)	()
	ck (A10) (LRR N)		X Redox Dark	• • •					rent Material (F	21)
	Below Dark Surface	e (A11)	Depleted Da		. ,				ide MLRA 127	
	irk Surface (A12)	()	Redox Depr					•	hallow Dark Sur	
	lucky Mineral (S1)		Iron-Mangar		. ,	2) (LRR N	٨.		Explain in Rema	. ,
	leyed Matrix (S4)		MLRA 13		``	, (`	•	,
	edox (S5)		Umbric Surf		B) (MLRA	122, 136	6)	³ Indicators	of hydrophytic v	regetation and
	Matrix (S6)		Piedmont Fl	oodplain	Soils (F	19) (MLR	A 148)	wetland	hydrology mus	st be present,
Dark Sur	face (S7)		Red Parent	Material	(F21) (LRA 127	, 147, 148)	unless	disturbed or pro	blematic.
Restrictive L	_ayer (if observed):									
Type:										
Depth (in	nches):						Hydric Soil	Present?	Yes X	No
Remarks:										

U.S. Army WETLAND DETERMINATION DATA SI See ERDC/EL TR-07-24; th		-	Requirement	#: 0710-xxxx, Exp: Pending c Control Symbol EXEMPT: \R 335-15, paragraph 5-2a)
Project/Site: Carpenter Bottom Mitigation Si	te	City/County: Gaston		Sampling Date: 7/15/19
Applicant/Owner: Wildlands Engineering,	Inc.		State: NC	Sampling Point: DP8
Investigator(s): Kristi Suggs & Ian Eckardt	Se	ction, Township, Range: N	I/A	
Landform (hillside, terrace, etc.): Floodplain	Local	relief (concave, convex, no	ne): Flat	Slope (%): <1%
Subregion (LRR or MLRA): LRR P, MLRA 13		Long: -81	-	Datum: NAD 83
Soil Map Unit Name: Worsham loam (WoA)			NWI classifica	
		V X		
Are climatic / hydrologic conditions on the site		Yes X		explain in Remarks.)
Are Vegetation X, Soil , or Hydrol			umstances" present	
Are Vegetation, Soil, or Hydrol	ogy naturally problema	atic? (If needed, expla	in any answers in R	emarks.)
SUMMARY OF FINDINGS – Attach	site map showing san	npling point location	is, transects, in	nportant features, etc.
,	Yes X No	vithin a Wetland?	Yes X	
Wetland Hydrology Indicators:		S	econdary Indicators	(minimum of two required)
Primary Indicators (minimum of one is requir	ed; check all that apply)		Surface Soil Crad	cks (B6)
X Surface Water (A1)	True Aquatic Plants (B1	4)	Sparsely Vegetat	ed Concave Surface (B8)
X High Water Table (A2)	Hydrogen Sulfide Odor ((C1)	Drainage Pattern	s (B10)
X Saturation (A3)	Oxidized Rhizospheres	on Living Roots (C3)	Moss Trim Lines	(B16)
Water Marks (B1)	X Presence of Reduced In		Dry-Season Wate	
Sediment Deposits (B2)	Recent Iron Reduction in		X Crayfish Burrows	
Drift Deposits (B3)	Thin Muck Surface (C7)			e on Aerial Imagery (C9)
Algal Mat or Crust (B4)	Other (Explain in Remar	· · · · · · · · · · · · · · · · · · ·	Stunted or Stress	()
Iron Deposits (B5)			X Geomorphic Pos	()
Inundation Visible on Aerial Imagery (B7)	_	Shallow Aquitard	()
Water-Stained Leaves (B9)			Microtopographic	Relief (D4)

X Aquatic Fauna (B13)					X FAC-Neutral Test (I)5)
Field Observations:						
Surface Water Present?	Yes	Х	No	Depth (inches): 9		
Water Table Present?	Yes	Х	No	Depth (inches): 9		
Saturation Present?	Yes	Х	No	Depth (inches): 14	Wetland Hydrology Present?	Yes X No
(includes capillary fringe)						
Describe Recorded Data (s	stream g	gauge, r	monitoring w	vell, aerial photos, previous	inspections), if available:	

Remarks:

Backswimmer was located in surface water.

VEGETATION (Four Strata) – Use scientific names of plants.

Sampling Point: DP8

	Absolute	Dominant	Indicator	
Tree Stratum (Plot size: 30)	% Cover	Species?	Status	Dominance Test worksheet:
1. Acer rubrum	60	Yes	FAC	Number of Dominant Species
2. Pinus taeda	10	No	FAC	That Are OBL, FACW, or FAC: (A)
3. Morus rubra	5	No	FACU	Total Number of Dominant
4. Fraxinus pennsylvanica	10	No	FACW	Species Across All Strata: 5 (B)
5				Percent of Dominant Species
6.				That Are OBL, FACW, or FAC: 80.0% (A/B)
7.				Prevalence Index worksheet:
	85	=Total Cover		Total % Cover of: Multiply by:
50% of total cover:	43 209	- % of total cover:	17	OBL species 29 x 1 = 29
Sapling/Shrub Stratum (Plot size: 15)			FACW species $10 x 2 = 20$
1. Pinus taeda	, 5	No	FAC	FAC species 165 x 3 = 495
2. Viburnum dentatum	20	Yes	FAC	FACU species $15 \times 4 = 60$
3. Juniperus virginiana	10	Yes	FACU	$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$
4.	10	103	1700	Column Totals: 219 (A) 604 (B)
				(')
5.				
6.				Hydrophytic Vegetation Indicators:
7.				1 - Rapid Test for Hydrophytic Vegetation
8				X 2 - Dominance Test is >50%
9				X_3 - Prevalence Index is ≤3.0 ¹
	35	=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover:	18 209	% of total cover:	7	data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 5)				Problematic Hydrophytic Vegetation ¹ (Explain)
1. Microstegium vimineum	70	Yes	FAC	¹ Indicators of hydric soil and wetland hydrology must be
2. Saururus cernuus	2	No	OBL	present, unless disturbed or problematic.
3. Symphyotrichum puniceum	27	Yes	OBL	Definitions of Four Vegetation Strata:
4.				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5.				more in diameter at breast height (DBH), regardless of
6.		_		height.
7.				Sapling/Shrub – Woody plants, excluding vines, less
8.				than 3 in. DBH and greater than or equal to 3.28 ft
9.				(1 m) tall.
10.				Herb – All herbaceous (non-woody) plants, regardless
11.				of size, and woody plants less than 3.28 ft tall.
····	99	=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
		-	20	height.
	50 209	% of total cover:	20	
Woody Vine Stratum (Plot size:)				
1				
2				
3.				
4.				
5.				Hydrophytic
		=Total Cover		Vegetation
50% of total cover:	209	% of total cover:		Present? Yes X No
Remarks: (Include photo numbers here or on a sep	arate sheet)		
Remarks. (moldue photo numbers here of on a sep)		

	cription. (Describe	to the de				ator or co	onfirm the absence	of indicators.)
Depth	Matrix		Redo	x Featur				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-8	5Y 3/1	90	5YR 4/6	10	С	Μ	Loamy/Clayey	Prominent redox concentrations
8-14	5Y 3/1	80	5YR 4/6	20	С	M	Loamy/Clayey	Prominent redox concentrations
¹ Type: C=C	oncentration, D=Depl	letion, RM	I=Reduced Matrix, I	NS=Masl	ked Sand	d Grains.	² Locatio	n: PL=Pore Lining, M=Matrix.
Hydric Soil	Indicators:						Indi	icators for Problematic Hydric Soil
Histosol	(A1)		Polyvalue B	elow Sur	face (S8) (MLRA	147, 148)	2 cm Muck (A10) (MLRA 147)
Histic E	pipedon (A2)		Thin Dark S	urface (S	59) (MLR	A 147, 14	48)	Coast Prairie Redox (A16)
	istic (A3)		Loamy Mucl	•	, .		·	(MLRA 147, 148)
	en Sulfide (A4)		Loamy Gley	•	. , .			Piedmont Floodplain Soils (F19)
	d Layers (A5)		Depleted Ma		. ,			(MLRA 136, 147)
	uck (A10) (LRR N)		X Redox Dark	. ,				Red Parent Material (F21)
	d Below Dark Surface	(11)	Depleted Da		. ,			(outside MLRA 127, 147, 148)
		e (ATT)			. ,			,
	ark Surface (A12)		Redox Depr				. —	Very Shallow Dark Surface (F22)
	Aucky Mineral (S1)		Iron-Mangar		sses (F12	2) (LRR M	N,	Other (Explain in Remarks)
	Bleyed Matrix (S4)		MLRA 13				3	
	Redox (S5)		X Umbric Surf	•	, .	•	•	licators of hydrophytic vegetation and
	l Matrix (S6)		Piedmont Fl	•		, .	•	wetland hydrology must be present,
Dark Su	rface (S7)		Red Parent	Material	(F21) (M	LRA 127	, 147, 148)	unless disturbed or problematic.
	Layer (if observed):							
Type:							Hydric Soil Pres	ent? Yes X No
Type: Depth (i	nches):							

U.S. Arm WETLAND DETERMINATION DATA See ERDC/EL TR-07-24;		ains and Piedmont Region	OMB Control #: 0710-xxxx, Exp: Pending Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)
Project/Site: Carpenter Bottom Mitigation	Site	City/County: Gaston	Sampling Date: 7/12/19
Applicant/Owner: Wildlands Engineerir	ng, Inc.		State: NC Sampling Point: DP9
Investigator(s): Kristi Suggs & Ian Eckardt	•	Section, Township, Range: N/A	
Landform (hillside, terrace, etc.): Hummo		ccal relief (concave, convex, none	
Subregion (LRR or MLRA): LRR P, MLRA		Long: -81.26	
Soil Map Unit Name: Worsham loam (Work		Long01.20	NWI classification: N/A
· · · · · · · · · · · · · · · · · · ·		ver? Vee V N	—
Are climatic / hydrologic conditions on the s			No (If no, explain in Remarks.)
Are Vegetation, Soil, or Hyde			nstances" present? Yes X No
Are Vegetation, Soil, or Hyde	rologynaturally prob	lematic? (If needed, explain	any answers in Remarks.)
SUMMARY OF FINDINGS – Attac	h site map showing	sampling point locations	, transects, important features, etc.
Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes No X Yes No X Yes No X	Is the Sampled Area within a Wetland?	Yes NoX
HYDROLOGY			
Wetland Hydrology Indicators:		Sec	condary Indicators (minimum of two required)
Primary Indicators (minimum of one is requested as a second secon		(P14)	Surface Soil Cracks (B6) Sparsely Vegetated Concave Surface (B8)
Surface Water (A1) High Water Table (A2)	True Aquatic Plants Hydrogen Sulfide O		Drainage Patterns (B10)
Saturation (A3)		eres on Living Roots (C3)	Moss Trim Lines (B16)
Water Marks (B1)	Presence of Reduce		Dry-Season Water Table (C2)
Sediment Deposits (B2)	Recent Iron Reduct	ion in Tilled Soils (C6)	Crayfish Burrows (C8)
Drift Deposits (B3)	Thin Muck Surface		Saturation Visible on Aerial Imagery (C9)
Algal Mat or Crust (B4)	Other (Explain in Re	emarks)	Stunted or Stressed Plants (D1)
Iron Deposits (B5)	87)		Geomorphic Position (D2)
Inundation Visible on Aerial Imagery (I Water-Stained Leaves (B9)	57)		Shallow Aquitard (D3) Microtopographic Relief (D4)
Aquatic Fauna (B13)			FAC-Neutral Test (D5)
Field Observations:			
Surface Water Present? Yes	No X Depth (incl	nes):	
Water Table Present? Yes	No X Depth (incl		
Saturation Present? Yes	No <u>X</u> Depth (incl	nes): Wetland Hydr	ology Present? Yes <u>No X</u>
(includes capillary fringe)			
Describe Recorded Data (stream gauge, n	nonitoring well, aerial photo	s, previous inspections), if availat	ole:
Remarks: No hydrologic indicators present.			

VEGETATION (Four Strata) – Use scientific names of plants.

Sampling Point: DP9

	Absolute	Dominant	Indicator	
Tree Stratum (Plot size: 30)	% Cover	Species?	Status	Dominance Test worksheet:
1. Juglans nigra	40	Yes	FACU	Number of Dominant Species
2. Pinus taeda	20	Yes	FAC	That Are OBL, FACW, or FAC: 2 (A)
3				Total Number of Dominant
4.				Species Across All Strata: 4 (B)
5				Percent of Dominant Species
6				That Are OBL, FACW, or FAC: 50.0% (A/B)
7		<u></u>		Prevalence Index worksheet:
	60	=Total Cover	_	Total % Cover of: Multiply by:
50% of total cover: 30	20%	6 of total cover:	12	OBL species 0 x 1 = 0
Sapling/Shrub Stratum (Plot size: 15)	_		_	FACW species 15 x 2 = 30
1. Fraxinus pennsylvanica	5	Yes	FACW	FAC species 20 x 3 = 60
2.				FACU species 125 x 4 = 500
3.				UPL species 0 x 5 = 0
4.				Column Totals: 160 (A) 590 (B)
5.				Prevalence Index = $B/A = 3.69$
6.				Hydrophytic Vegetation Indicators:
7.				
				1 - Rapid Test for Hydrophytic Vegetation
8				2 - Dominance Test is >50%
9				3 - Prevalence Index is ≤3.0 ¹
		=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover: <u>3</u>	20%	6 of total cover:	1	data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 5)				Problematic Hydrophytic Vegetation ¹ (Explain)
1. Schedonorus arundinaceus	80	Yes	FACU	¹ Indicators of hydric soil and wetland hydrology must be
2. Juncus effusus	10	No	FACW	present, unless disturbed or problematic.
3. Eupatorium capillifolium	5	No	FACU	Definitions of Four Vegetation Strata:
4.				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5.				more in diameter at breast height (DBH), regardless of
6.				height.
7.		<u> </u>		Sapling/Shrub – Woody plants, excluding vines, less
8.				than 3 in. DBH and greater than or equal to 3.28 ft
9.				(1 m) tall.
10.				Herb – All herbaceous (non-woody) plants, regardless
11.				of size, and woody plants less than 3.28 ft tall.
···-	95	=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover: 48		6 of total cover:	19	height.
Woody Vine Stratum (Plot size:)			10	
1				
2.				
3.				
4				
5				Hydrophytic
		=Total Cover		Vegetation
50% of total cover:	20%	6 of total cover:		Present? Yes No X
Remarks: (Include photo numbers here or on a separ	rate sheet.)			

SOIL

Depth	Matrix		Redo	x Featur			onfirm the ab			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Rem	arks
0-8	7.5YR 4/6	100					Loamy/Cla	iyey		
8-14	7.5YR 4/4	100					Loamy/Cla	ivev		
0 11		100					Loamy or			
	·	. <u> </u>			·					
	·				·					
	·									
	oncentration, D=Depl	etion, RM	=Reduced Matrix, N	//S=Mas	ked Sand	d Grains.	² L	ocation: PL=P	-	
	Indicators:									atic Hydric Soils
Histoso			Polyvalue B		•	, .			uck (A10) (M	
	pipedon (A2)		Thin Dark S	•					rairie Redox	(A16)
Black H	istic (A3)		Loamy Mucl	ky Miner	al (F1) (N	ILRA 136	6)	(MLR	A 147, 148)	
Hydroge	en Sulfide (A4)		Loamy Gley	ed Matri	x (F2)			Piedmo	nt Floodplain	Soils (F19)
Stratifie	d Layers (A5)		Depleted Ma	atrix (F3))			(MLR	A 136, 147)	
2 cm Mu	uck (A10) (LRR N)		Redox Dark	Surface	e (F6)			Red Par	ent Material	(F21)
Deplete	d Below Dark Surface	e (A11)	Depleted Da	ark Surfa	ace (F7)			(outsi	de MLRA 12	27, 147, 148)
Thick D	ark Surface (A12)		Redox Depr	essions	(F8)			Very Sh	allow Dark S	urface (F22)
Sandy N	Mucky Mineral (S1)		Iron-Mangar	nese Ma	sses (F12	2) (LRR N	٧,	Other (E	Explain in Rei	marks)
Sandy C	Gleyed Matrix (S4)		MLRA 13	6)						-
Sandy F	Redox (S5)		Umbric Surf	ace (F13	3) (MLRA	122, 136	6)	³ Indicators o	f hydrophytic	vegetation and
Stripped	d Matrix (S6)		Piedmont Fl	oodplair	n Soils (F	19) (MLR	A 148)	wetland	hydrology m	ust be present,
Dark Su	irface (S7)		Red Parent	Material	(F21) (M	LRA 127	, 147, 148)	unless c	listurbed or p	oroblematic.
Restrictive	Layer (if observed):									
Type:										
Depth (i	nches):						Hvdric So	il Present?	Yes	No X
	, <u> </u>									

APPENDIX 4 Stream Identification Forms

SCPI

Ditch above

NC DWQ Stream Identification Form Version 4.11

	Herston Hitt			
Date: 7-11-19	Project/Site: (Curpenter Bottom	Latitude:	
Evaluator: IE/KS	County: Go	iston	Longitude:	•
Total Points:	Straam Data		C C	
Stream is at least intermittent $20, 5$	Ephemeral Int	ermittent)Perennial	Other Carp	berter Branc
if \geq 19 or perennial if \geq 30 · α , \mathcal{O} , \mathcal{O}	-prioriprid int	erennal erennal	e.g. Quad Nama	Reach 1 - 0
0.00	·	· · ·		1173
A. Geomorphology (Subtotal = 9.25.)	Absent	Weak	Moderate	Strong
1 ³ Continuity of channel bed and bank	0	1	2	(3)
2. Sinuosity of channel along thalweg	0		2	
3. In-channel structure: ex. riffle-pool, step-pool,	0			
3. In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence Few pools -1: the to as 4. Particle size of stream substrate			2	3
	0		2	3
5. Active/relict floodplain	0	1	(2)	3
6. Depositional bars or benches	$\left(\begin{array}{c} 0 \end{array} \right)$	1	2	3
7. Recent alluvial deposits		1	2	3
8. Headcuts	$\left(\right)$.2	3
9. Grade control	0	0.5 ()	1	1.5
10. Natural valley	0	(0.5)	1	1.5
11. Second or greater order channel	(No	b=0)	Yes =	
artificial ditches are not rated; see discussions in manual				
B. Hydrology (Subtotal = <u>5.5</u>)		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		
2. Presence of Baseflow	()	1	2	3
3. Iron oxidizing bacteria		1	2	3
4. Leaf litter	(15)	1	0.5	0
5. Sediment on plants or debris	0	(05)	1	1.5
6. Organic debris lines or piles	0	0.5	1	1.5
7. Soil-based evidence of high water table?	No	= 0	Yes =	
C. Biology (Subtotal = $5, 75$)				· / · · · ·
8. Fibrous roots in streambed	(3)	2	1 1	0
9. Rooted upland plants in streambed few spits coddeb	ur 3	2	1	0
0. Macrobenthos (note diversity and abundance)	- (b)		2	
1. Aquatic Mollusks	- 60-	.1	2	3
2, Fish		0.5	1	
3. Crayfish		0.5		1.5
4. Amphibians	8	0.5		1.5
5. Algae		0.5	1	1.5
6. Wetland plants in streambed		(FACW = 0.75;) OBL =	= 1.5 (Other = 0	1.5
perennial streams may also be identified using other methods. Se	ee p. 35 of manual			·
otes:		•		
	•	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·			
ketch:		•	. ' •	
			•	ана страна с При страна стр
		· · ·		•
			*	
		•	•	
	,			,
· · · · · · · · · · · · · · · · · · ·				·

SCPZ

ŀ

Date: 8/1/2018	Project/Site:	Mainstan	Latitude: 35	24' 35.5K			
Evaluator: EPN		stan		Longitude: 61" 15 '38"W			
Total Points: Stream is at least intermittent $if \ge 19$ or perennial if $\ge 30^*$	Stream Determi	nation (circle one) rmittent Rerennial	Other e.g. Quad Name:				
A. Geomorphology (Subtotal = 24)	Absent	Weak	Moderate	Strong			
1 ^a Continuity of channel bed and bank	0	1	(2)	3			
2. Sinuosity of channel along thalweg	0	1	2	(3)			
3. In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence	0	1	2	3			
4. Particle size of stream substrate	0	1	2	3			
5. Active/relict floodplain	0	1	2	(3)			
6. Depositional bars or benches	0	1	\odot	3			
7. Recent alluvial deposits	0	C)	2	3			
8. Headcuts	0	1	2	3			
9. Grade control	0	0.5	1	(1.5			
10. Natural valley	0	0.5	1 _	(1.5)			
11. Second or greater order channel	No	= 0	Yes =				
^a artificial ditches are not rated; see discussions in manual B. Hydrology (Subtotal =)							
12. Presence of Baseflow	0	1	2	(3)			
13. Iron oxidizing bacteria	0	\square	2	3			
14. Leaf litter	1.5		0.5	0			
15. Sediment on plants or debris	0	6.5	1	1.5			
16. Organic debris lines or piles	0	0.5	Ó	1.5			
17. Soil-based evidence of high water table?	No	= 0	Yes =				
C. Biology (Subtotal = 5.25)				<u>ک</u>			
18. Fibrous roots in streambed	3	2	1	Ø			
19. Rooted upland plants in streambed	3		1				
20. Macrobenthos (note diversity and abundance)	6	1	2	3			
21. Aquatic Mollusks		1	2	3			
22. Fish	Ö	0.5	1	1.5			
23. Crayfish		0.5	1	1.5			
24. Amphibians	0	0.5	1	1.5			
25. Algae	0	0.5	1	1.5			
26. Wetland plants in streambed		FACW = 0.15; OBL	= 1.5 Other = 0	1.5			
*perennial streams may also be identified using other methods							
Notes:							
Sketch:				<u> </u>			

SCP 3

NC DWQ Stream Identification Form Version 4.11

NC DWQ Stream Identification Form	1 1 61 51011 4.11	· ·		
Date: 7-11-19	Project/Site: C	Carporter Bottom	Latitude:	·····
Evaluator: JE/KS		ston	Longitude:	
Total Points: Stream is at least intermittent 28.5 if ≥ 19 or perennial if ≥ 30°	Stream Determ Ephemeral Inte	ination (circle one) ermitten Perennial	Other UT e.g. Quad Name:	
A. Geomorphology (Subtotal =)	Absent	Weak	Moderate	
1 ³ Continuity of channel bed and bank	0	treak		Strong
2. Sinuosity of channel along thalweg			2	3
3. In-channel structure: ex. riffle-pool, step-pool,	0		2	3 .
ripple-pool sequence	0	(1)	2	3
4. Particle size of stream substrate	0	1 /18	2	
5. Active/relict floodolain	0	1 (1.5)		3
5. Depositional bars or benches	<u>(</u> 2	1	2	3
7. Recent alluvial deposits			2	3
B. Headcuts		1	2 .	3
). Grade control	$+ \bigcirc +$		2	3
0. Natural valley		0.5	R	1.5
		0.5		1.5
1. Second or greater order channel artificial ditches are not rated; see discussions in manual	(<u>No</u>	=0	Yes = 3	L
A		·	•	· · ·
$\frac{3. \text{Hydrology (Subtotal = } 8.5.)}{3. \text{Hydrology (Subtotal = } 8.5.)}$	1			
2. Presence of Baseflow	0		2	3
3. Iron oxidizing bacteria	0	1	(2)	3
4. Leaf litter	(15)	1	0.5	0
5. Sediment on plants or debris		032	1	1.5
6. Organic debris lines or piles	0	(0.5)	1	1.5
7. Soil-based evidence of high water table?	No	= 0	Yes = 3	
Biology (Subtotal =9)		,,,		
3. Fibrous roots in streambed	$\boxed{3}$	2	1	0
9. Rooted upland plants in streambed	$\left(\begin{array}{c} 3 \end{array} \right)$	2	1	0
). Macrobenthos (note diversity and abundance)		<u>– (n</u>	2	
I. Aquatic Mollusks	$\overline{(0)}$		2	3
2. Fish		0.5	1	3
3. Crayfish	+	(0.5)	·····	1.5
I. Amphibians	0	0.5		15
, Algae				(1.5)
Wetland plants in streambed		0.5	1	1.5
	1			
		FACW = 0.75; OBL	-1.5 Other = 0	non .
perennial streams may also be identified using other methods. S	See p. 35 of manual.	FACW = 0.75; OBL		<u> </u>
	See p. 35 of manual.	FAC99 = 0.75; OBL	- 1.5 (Uner = 0)	<u> </u>
perennial streams may also be identified using other methods. S ptes:			- 1.5 Other = 0	<u> </u>
perennial streams may also be identified using other methods. S ptes:			- 1.5 (Uner = 0)	<u> </u>
perennial streams may also be identified using other methods. Soples: setch: Particle size: U/S is mainly O/S end his si	Pires (silt / one boulder,		- 1.5 (Uner = 0)	<u> </u>
perennial streams may also be identified using other methods. Soples: setch: Particle size: U/S is mainly O/S end his si	Pires (silt / one boulder,		- 1.5 (Uner = 0)	<u></u>
perennial streams may also be identified using other methods. S ples: setch: Particle size: U/S is mainly O/S end his si H dragonflics I crayfi	Pires (silt / one boulder,		- 1.5 (Uner = 0)	
perennial streams may also be identified using other methods. Soples: setch: Particle size: U/S is mainly O/S end his si	Pires (silt / one boulder,		- 1.5 (Uner = 0)	<u></u>
perennial streams may also be identified using other methods. S ples: setch: Particle size: U/S is mainly O/S end his si H dragonflics I crayfi	Pires (silt / one boulder,		- 1.5 (Uner = 0)	<u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>P</u><u>A</u><u>A</u><u>P</u><u>A</u><u>A</u><u>A</u><u>A</u><u>A</u><u>A</u><u>A</u><u>A</u><u>A</u><u>A</u><u>A</u><u>A</u><u>A</u></u>

SCP4

NC DWO Stream Id

÷.,

	version 4.11	1 ×		•	
Date: 7-11-19	Project/Site:	Carpenter Bo	Hom Latitude:].
Evaluator: IE/KS		aston	Longitude:		
Total Points: Stream is at least intermittent if \geq 19 or perennial if \geq 30	Stream Detern	nination (cirete one termittent Perenni		U/S End above conflu	
				e de la contente	
A. Geomorphology (Subtotal = んう)	Absent	Weak	Moderate	<u></u>	· .
1 ³ Continuity of channel bed and bank	0		2	Strong	_
2. Sinuosity of channel along thalweg	0	+	2	(3)	
3. In-channel structure: ex. riffle-pool, step-pool,			4	3.	
ripple-pool sequence	0	1 1 Q.	2	3	· .
4. Particle size of stream substrate	0	1	3	3	
5. Active/relict floodolain	0	1	2	3	-
6. Depositional bars or benches	(D)	1	2		
7. Recent alluvial deposits	$\left(\begin{array}{c} 0 \end{array} \right)$	1) 2	3	-
8. Headcuts		(1)	2	3	
9. Grade control Few - small bould if bedrack	0	0.5		3	
10. Natural valley	0	0.5		1.5	· .
11. Second or greater order channel		$rac{0.5}{0.5}$		1.5	
artificial ditches are not rated; see discussions in manual	<u> </u>	<u> </u>	Yes =] ·
B. Hydrology (Subtotal = 9.5)			•	de la	
12. Presence of Baseflow	0			ign 9	1
13. Iron oxidizing bacteria	· · · · · · · · · · · · · · · · · · ·	. 1	(2)	3	
14. Leaf litter		1.	2	3	• 56 ^{°°}
15. Sediment on plants or debris	(1.5)		0.5	0	
16. Organic debris lines or piles	0	35	1	1.5	
17. Soil-based evidence of high water table?	0	0.5	-1	1.5	
C. Biology (Subtotal = $(1), (25)$)		0 = 0	(Yes =	3	-
18. Fibrous roots in streambed		1.			· .
19. Rooted upland plants in streambed		2	1	. 0	
20. Macrobenthos (note diversity and abundance)		2	1	0	
21. Aquatic Mollusks	0	1	2	3	
22. Fish	CZ -	1	2	3	
23. Crayfish	0.	0.5	1	1.5	°0-
23. Craynsn 24. Amphibians	0	0.5	1	1.5	
	0	0.5		1.5	1 Alexandre -
25. Algae		(0.5)	1	1.5	
26. Wetland plants in streambed Asian Spidiment	(FACW = 0.75 OI	BL = 1.5 Other = 0		
perennial streams may also be identified using other methods, S	iee p. 35 of manual	· · · · · · · · · · · · · · · · · · ·		·	
Notes:		· · · · · · · · · · · · · · · · · · ·			
	<u></u>	·			
Sketch: Drayoutly 1		•			
Sketch: Dragontly 1 Bostman ? Water striber 111		•	· .		
	. · · ·		i de la companya de l La companya de la comp		₩ <u>₩₩₩₩₩</u> ₩
Salement III			•		
			1. I I I I I I I I I I I I I I I I I I I		

SCP 5

NC DWQ Stream Identification Form Version 4.11

Date: 7-11-19	Project/Site: C	arpenter	Latitude:	Latitude:	
Evaluator: IE/KS.	County: Gas	ton	Longitude:	Longitude:	
Total Points: Stream is at least intermittent こう、イタ i 2 19 or perennial if 2 30*		ination (circle on ermittent Perenni			
A. Geomorphology (Subtotal = <u>9,5</u>)	Absent	Weak	Moderate		
³ Continuity of channel bed and bank	0	1	2	Strong	
. Sinuosity of channel along thalweg	0	<u><u></u></u>	2		
In-channel structure: ex. rifile-pool, step-pool, ripple-pool sequence	0	1 (1,	2 2	3	
. Particle sizé of stream substrate	0	1 (b · · 2	3	
, Active/relict floodolain	0		2	3	
Depositional bars or benches	6	1	2	3	
Recent alluvial deposits		1	2 .	3	
Headcuts	$\left(\delta \right)$	1	2	3	
Grade control Several lunc time roads	0	0.5	Đ.	1.5	
0. Natural valley	0	(0.5)	1	1.5	
1. Second or greater order channel	(No	$\vec{v} = 0$	Yes =		
artificial ditches are not rated; see discussions in manual					
. Hydrology (Subtotal = <u>5,5</u>)	-		•		
2. Presence of Baseflow		1	2	3	
3. Iron oxidizing bacteria		1	2	3	
I. Leaf litter	(1.5)	1	0.5	0	
5. Sediment on plants or debris	0	(0.5)	1	1.5	
5. Organic debris lines or piles	0	(0.5)		1.5	
. Soil-based evidence of high water table?	No	= 0	(Yes =		
Biology (Subtotal = 5.75)		1			
Fibrous roots in streambed	(3)	2	1	0	
. Rooted upland plants in streambed	3	(2)	1	0	
Macrobenthos (note diversity and abundance)		1	2	3	
. Aquatic Mollusks	(.1	2	3	
. Fish		0.5	1	1.5	
. Crayfish	L CR	0.5	1	1.5	
. Amphibians		0.5	1	1.5	
Algae	1 (0)	0.5	1	1.5	
Wetland plants in streambed Asian Spidarwa		(FACW = 0.75) C	BL = 1.5 Other = 0		
erennial streams may also be identified using other methods	See p. 35 of manual	Sector of the se		• <u> </u>	
ites:			· · ·	· ·	
etch:		•			

SCP 6

NC DWQ Stream Identification Form Version 4.11

Date: 7-11-19	Project/Site:	Carpenter Botto	Latitude:	
Evaluator: JE/KS	County: G		Longitude:	•
Total Points: Stream is at least intermittent 35 if ≥ 19 or perennial if $\geq 30^{\circ}$	Stream Deterr	nination (circle one) termitten(Perennia	Other UTH e.g. Quad Name	
	•			,
A. Geomorphology (Subtotal = 15 .)	Absent	Weak	Moderate	Strong
1 ³ Continuity of channel bed and bank	0	1	2	
2. Sinuosity of channel along thalweg	0	m	- 2	3
3. In-channel structure: ex. riffle-pool, step-pool,	0			3
ripple-pool sequence	0		2	3
4. Particle size of stream substrate	0	1	2	(3)
5. Active/relict floodolain	0	1	(2)	.3
6. Depositional bars or benches	0		2	3
7. Recent alluvial deposits	0.	(1)	2 .	3 ·
8. Headcuts		1	2	3
9. Grade control	0	0.5		1.5
10. Natural valley	0	6 0.5	$(\hat{1})$	1.5
11, Becond or greater order channel	(N	o = 0	Yes	
artificial ditches are not rated; see discussions in manual				
B. Hydrology (Subtotal =9, S)			•	
12. Presence of Baseflow	0	1	2	(3)
13. Iron oxidizing bacteria	2	(1)	2	3
14. Leaf litter	(1.5)	1	0.5	0
15. Sediment on plants or debris		(255)	.1	1.5
16. Organic debris lines or piles	0	(0.5)	1	1.5
17. Soil-based evidence of high water table?	No	0=0	Yes =	
C. Biology (Subtotal = 10.5)		1		-
18. Fibrous roots in streambed	$\left(\begin{array}{c} 2 \end{array} \right)$	2	1	0
19. Rooted upland plants in streambed	(3)	2	1	. 0
20. Macrobenthos (note diversity and abundance)	0	1	(2)	
21. Aquatic Mollusks		.1	2	3
22. Fish	\bigcirc	0.5	1	1.5
23. Crayfish	0	0.5	1	(1.5)
24. Amphibians	0	0.5	(\mathbf{T})	1.5
25. Algae	$\left(\circ \right)$	0.5	1	1.5
26. Wetland plants in streambed		FACW = 0.75; OB	L = 1.5 (Other = 0	
*perennial streams may also be identified using other methods.	See p. 35 of manua	I.		
Notes: Evuluated last 30" of chinal	between .	Center 1 5	on thead w	TCR
Observed 1 hellgrammite, 6 cra	yfish 2 sto	noffics 4 icro	Aflies : 2 ou	III
	<i>j</i>	1.		<u>ארי ארי ארי ארי ארי ארי ארי ארי ארי ארי </u>
Sketch:		•	,	
	-			•

NC SAM FIELD ASSESSMENT FORM

	Accompanies User Manual Version 2.1				
USACE AID #:	NCDWR #:				
INSTRUCTIONS: Attach a sketch of the assessment area and photographs. Attach a copy of the USGS 7.5-minute topographic quadrangle,					
and circle the location of the stream reach under evaluation. If multiple stream reaches will be evaluated on the same property, identify and					
	ached map, and include a separate form for each reach. See the NC SAM User Manual for detailed descriptions				
	d information. Record in the "Notes/Sketch" section if supplementary measurements were performed. See the				
	mples of additional measurements that may be relevant.				
NOTE EVIDENCE OF STRES	SORS AFFECTING THE ASSESSMENT AREA (do not need to be within the assessment area).				
PROJECT/SITE INFORMATI					
1. Project name (if any):	Carpenter Bottom Mitigation Site 2. Date of evaluation: 7/15/2019				
3. Applicant/owner name:	Wildlands 4. Assessor name/organization: M. Caddell				
5. County:	Gaston 6. Nearest named water body				
7. River basin:	Catawba on USGS 7.5-minute quad: Beaverdam Creek				
•	egrees, at lower end of assessment reach): 35.40929, -81.26030				
STREAM INFORMATION: (d	epth and width can be approximations) Carpenter Reach				
9. Site number (show on attac	hed map): 1 (above UT3) 10. Length of assessment reach evaluated (feet): 130				
11. Channel depth from bed (i	n riffle, if present) to top of bank (feet): 1 Unable to assess channel depth.				
12. Channel width at top of ba	nk (feet): 2 13. Is assessment reach a swamp steam? Yes No				
14. Feature type: Perennia	I flow ⊠Intermittent flow				
STREAM CATEGORY INFO	RMATION:				
15. NC SAM Zone:	🗌 Mountains (M) 🛛 Piedmont (P) 🗌 Inner Coastal Plain (I) 🗌 Outer Coastal Plain (O)				
16. Estimated geomorphic valley shape (skip for Tidal Marsh Stream):	$\square A$ (more sinuous stream, flatter valley slope) $\square B$ (less sinuous stream, steeper valley slope)				
17. Watershed size: (skip	Size 1 (< 0.1 mi ²) Size 2 (0.1 to < 0.5 mi ²) Size 3 (0.5 to < 5 mi ²) Size 4 (≥ 5 mi ²)				
for Tidal Marsh Stream)					
ADDITIONAL INFORMATION	l:				
18. Were regulatory considera Section 10 water Essential Fish Habitat Publicly owned property Anadromous fish	tions evaluated? ⊠Yes ☐No If Yes, check all that apply to the assessment area. ☐Classified Trout Waters ☐Primary Nursery Area ☐ High Quality Waters/Outstanding Resource Waters				
Designated Critical Hat	itat (list species)				
	mation/supplementary measurements included in "Notes/Sketch" section or attached? Yes No				
1. Channel Water – assess	ment reach metric (skip for Size 1 streams and Tidal Marsh Streams) t assessment reach. pools only.				

2. Evidence of Flow Restriction – assessment reach metric

- At least 10% of assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction <u>or</u> fill to the point of obstructing flow <u>or</u> a channel choked with aquatic macrophytes <u>or</u> ponded water <u>or</u> impoundment on flood or ebb within the assessment reach (examples: undersized or perched culverts, causeways that constrict the channel, tidal gates, debris jams, beaver dams).
- B Not A

3. Feature Pattern – assessment reach metric

A majority of the assessment reach has altered pattern (examples: straightening, modification above or below culvert). B Not A

4. Feature Longitudinal Profile – assessment reach metric

Majority of assessment reach has a substantially altered stream profile (examples: channel down-cutting, existing damming, over widening, active aggradation, dredging, and excavation where appropriate channel profile has not reformed from any of these disturbances).
 Not A

5. Signs of Active Instability – assessment reach metric

Consider only current instability, not past events from which the stream has currently recovered. Examples of instability include active bank failure, active channel down-cutting (head-cut), active widening, and artificial hardening (such as concrete, gabion, rip-rap).

- A < 10% of channel unstable
- B 10 to 25% of channel unstable
- C > 25% of channel unstable

6. Streamside Area Interaction – streamside area metric Consider for the Left Bank (LB) and the Right Bank (RB).

Consi	der for	the	Left	Bank	(
LB	RB				

- Little or no evidence of conditions that adversely affect reference interaction Moderate evidence of conditions (examples: berms, levees, down-cutting, a
 - B Moderate evidence of conditions (examples: berms, levees, down-cutting, aggradation, dredging) that adversely affect reference interaction (examples: limited streamside area access, disruption of flood flows through streamside area, leaky or intermittent bulkheads, causeways with floodplain constriction, minor ditching [including mosquito ditching])
- C Extensive evidence of conditions that adversely affect reference interaction (little to no floodplain/intertidal zone access [examples: causeways with floodplain and channel constriction, bulkheads, retaining walls, fill, stream incision, disruption of flood flows through streamside area] <u>or</u> too much floodplain/intertidal zone access [examples: impoundments, intensive mosquito ditching]) <u>or</u> floodplain/intertidal zone unnaturally absent <u>or</u> assessment reach is a man-made feature on an interstream divide

7. Water Quality Stressors – assessment reach/intertidal zone metric

Check all that apply.

⊠A ⊡B

ПС

- Discolored water in stream or intertidal zone (milky white, blue, unnatural water discoloration, oil sheen, stream foam)
- B Excessive sedimentation (burying of stream features or intertidal zone)
- C Noticeable evidence of pollutant discharges entering the assessment reach and causing a water quality problem
- D Odor (not including natural sulfide odors)
- E Current published or collected data indicating degraded water quality in the assessment reach. Cite source in "Notes/Sketch" section.
- F Livestock with access to stream or intertidal zone
- G Excessive algae in stream or intertidal zone
- Degraded marsh vegetation in the intertidal zone (removal, burning, regular mowing, destruction, etc)
- Other: _____ (explain in "Notes/Sketch" section)
- J Little to no stressors

8. Recent Weather – watershed metric (skip for Tidal Marsh Streams)

- For Size 1 or 2 streams, D1 drought or higher is considered a drought; for Size 3 or 4 streams, D2 drought or higher is considered a drought.
- A Drought conditions and no rainfall or rainfall not exceeding 1 inch within the last 48 hours
- B Drought conditions and rainfall exceeding 1 inch within the last 48 hours
- C No drought conditions

9. Large or Dangerous Stream – assessment reach metric

Yes No Is stream is too large or dangerous to assess? If Yes, skip to Metric 13 (Streamside Area Ground Surface Condition).

10. Natural In-stream Habitat Types - assessment reach metric

10a. Yes Degraded in-stream habitat over majority of the assessment reach (examples of stressors include excessive sedimentation, mining, excavation, in-stream hardening [for example, rip-rap], recent dredging, and snagging) (evaluate for Size 4 Coastal Plain streams only, then skip to Metric 12)

10b. Check all that occur (occurs if > 5% coverage of assessment reach) (skip for Size 4 Coastal Plain streams)

- A Multiple aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)
- B Multiple sticks and/or leaf packs and/or emergent vegetation
- C Multiple snags and logs (including lap trees)
- D 5% undercut banks and/or root mats and/or roots
- in banks extend to the normal wetted perimeter
- E Little or no habitat

Check for Tidal Marsh Streams Only]F]G]H]J]K
--	----------------------------

5% oysters or other natural hard bottoms Submerged aquatic vegetation Low-tide refugia (pools) Sand bottom 5% vertical bank along the marsh Little or no habitat

11. Bedform and Substrate – assessment reach metric (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)

- 11a.
 Yes
 No Is assessment reach in a natural sand-bed stream? (skip for Coastal Plain streams)
- 11b. Bedform evaluated. Check the appropriate box(es).
 - A Riffle-run section (evaluate 11c)
 - B Pool-glide section (evaluate 11d)
 - C Natural bedform absent (skip to Metric 12, Aquatic Life)
- 11c. In riffle sections, check all that occur below the normal wetted perimeter of the assessment reach whether or not submerged. Check at least one box in each row (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams). Not Present (NP) = absent, Rare (R) = present but ≤ 10%, Common (C) = > 10-40%, Abundant (A) = > 40-70%, Predominant (P) = > 70%. Cumulative percentages should not exceed 100% for each assessment reach.
 NP
 R
 C
 A
 P

	,		Bedrock/saprolite Boulder (256 – 4096 mm) Cobble (64 – 256 mm) Gravel (2 – 64 mm) Sand (.062 – 2 mm) Silt/clay (< 0.062 mm) Detritus
			Artificial (rip-rap, concrete, etc.)

11d. Tyes No Are pools filled with sediment? (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)

12. Aquatic Life – assessment reach metric (skip for Tidal Marsh Streams)

- 12a. □Yes ⊠No Was an in-stream aquatic life assessment performed as described in the User Manual? If No, select one of the following reasons and skip to Metric 13. No Water Other:
- 12b. Yes ⊠No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
 - Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. >1
 - Adult frogs

1

- Aquatic reptiles
 - Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)
- Beetles
- Caddisfly larvae (T)
- Asian clam (Corbicula)
- Crustacean (isopod/amphipod/crayfish/shrimp)
- Dipterans Mayfly larvae (E)
- Megaloptera (alderfly, fishfly, dobsonfly larvae)
- Midges/mosquito larvae
- Mosquito fish (*Gambusia*) or mud minnows (*Umbra pygmaea*)
- Mussels/Clams (not Corbicula)
 - Other fish Salamanders/tadpoles

 - Stonefly larvae (P)
 - Tipulid larvae
 - Worms/leeches

13. Streamside Area Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types)

Consider for the Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff. LB RB

ΠA	ΠA	Little or no alteration to water storage capacity over a majority of the streamside area
□в	□в	Moderate alteration to water storage capacity over a majority of the streamside area
⊠C	⊠C	Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction,
		livestock disturbance, buildings, man-made levees, drainage pipes)

14. Streamside Area Water Storage - streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Consider for the Left Bank (LB) and the Right Bank (RB) of the streamside area.

LB	RB
ΠA	ΠA
□в	□в
⊠C	⊠C

- Majority of streamside area with depressions able to pond water ≥ 6 inches deep
- Majority of streamside area with depressions able to pond water 3 to 6 inches deep
- Majority of streamside area with depressions able to pond water < 3 inches deep $\boxtimes C$

15. Wetland Presence – streamside area metric (skip for Tidal Marsh Streams)

Consider for the Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the normal wetted perimeter of assessment reach. RB

- LB ×Ν
 - ΠY Are wetlands present in the streamside area?
- ΠN ΜN
- 16. Baseflow Contributors assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)

Check all contributors within the assessment reach or within view of and draining to the assessment reach.

- ΠA Streams and/or springs (jurisdictional discharges)
- ⊡в Ponds (include wet detention basins; do not include sediment basins or dry detention basins)
- □с Obstruction passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir)
- DD Evidence of bank seepage or sweating (iron in water indicates seepage)
- ΞE Stream bed or bank soil reduced (dig through deposited sediment if present)
- ∏F None of the above

17. Baseflow Detractors – assessment area metric (skip for Tidal Marsh Streams)

Check all that apply.

Evidence of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation) ΠA

□в Obstruction not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) □с Urban stream (\geq 24% impervious surface for watershed)

- Evidence that the streamside area has been modified resulting in accelerated drainage into the assessment reach ΔD
- ΠE Assessment reach relocated to valley edge
- ΠF None of the above

18. Shading – assessment reach metric (skip for Tidal Marsh Streams)

- Consider aspect. Consider "leaf-on" condition.
- ΠA Stream shading is appropriate for stream category (may include gaps associated with natural processes)
- ⊠В Degraded (example: scattered trees)
- □С Stream shading is gone or largely absent

19.	Buffer Width – streamside area metric	(ski	p for	Tidal	Marsh	Streams)

Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break.

	$ \begin{array}{c c} LB & RB & LB \\ \hline \square A & \square A & \square A \\ \hline \square B & \square B & \square B \\ \hline \square C & \square C & \square C \\ \end{array} $	odedRB $\Lambda \square A$ \geq 100 feet wide or extends to the edge of the watershed $B \square B$ From 50 to < 100 feet wide $C \square C$ From 30 to < 50 feet wide $D \square D$ From 10 to < 30 feet wide
20.		 streamside area metric (skip for Tidal Marsh Streams) bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width). Mature forest Non-mature woody vegetation or modified vegetation structure Herbaceous vegetation with or without a strip of trees < 10 feet wide Maintained shrubs Little or no vegetation
21.	Check all appropwithin 30 feet of sIf none of the folAbuts< 3LBRBLBAAABBCC	 streamside area metric (skip for Tidal Marsh Streams) riate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is tream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). lowing stressors occurs on either bank, check here and skip to Metric 22: 0 feet 30-50 feet RB LB RB A A B B B B B Maintained turf C C C C C D A A A A C asture (no livestock)/commercial horticulture D D D D D
22.		t reamside area metric (skip for Tidal Marsh Streams) bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width). Medium to high stem density Low stem density No wooded riparian buffer <u>or</u> predominantly herbaceous species <u>or</u> bare ground
23.		getated Buffer – streamside area metric (skip for Tidal Marsh Streams) vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. The total length of buffer breaks is < 25 percent. The total length of buffer breaks is between 25 and 50 percent. The total length of buffer breaks is > 50 percent.
24.		 bosition – streamside area metric (skip for Tidal Marsh Streams) inant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to a habitat. Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse. Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent or communities with non-native invasive species diversity or proportions. Mature canopy is absent or communities with non-native invasive species diversity or proportions. Mature canopy is absent or communities with non-native invasive species diversity or proportions. Mature canopy is absent or communities with non-native invasive species diversity or proportions. Mature canopy is absent or communities with non-native invasive species dominant over a large portion of expected strata or communities composed of planted stands of non-characteristic species or communities inappropriately composed of a single species or no vegetation.
25.	25a. □Yes ⊠ If No, select	ssessment reach metric (skip for all Coastal Plain streams) No Was conductivity measurement recorded? one of the following reasons. No Water Other:
	25b. Check the b □A < 46	ox corresponding to the conductivity measurement (units of microsiemens per centimeter). $\square B$ 46 to < 67 $\square C$ 67 to < 79 $\square D$ 79 to < 230 $\square E \ge 230$

Notes/Sketch:

Draft NC SAM Stream Rating Sheet Accompanies User Manual Version 2.1

Stream Site Name	Carpenter Bottom Mitigation Site	Date of Assessment	7/15/2019	
Stream Category Pa1 Assessor Name/Organization				
Additional stream int	ssment Form (Y/N) ory considerations (Y/N) formation/supplementary measu e (perennial, intermittent, Tidal N	/arsh Stream)	NO YES NO Intermittent	

	USACE/	NCDWR
Function Class Rating Summary	All Streams	Intermittent
(1) Hydrology	MEDIUM	MEDIUM
(2) Baseflow	MEDIUM	MEDIUM
(2) Flood Flow	MEDIUM	MEDIUM
(3) Streamside Area Attenuation	MEDIUM	MEDIUM
(4) Floodplain Access	HIGH	HIGH
(4) Wooded Riparian Buffer	LOW	LOW
(4) Microtopography	LOW	LOW
(3) Stream Stability	MEDIUM	MEDIUM
(4) Channel Stability	HIGH	HIGH
(4) Sediment Transport	LOW	LOW
(4) Stream Geomorphology	MEDIUM	MEDIUM
(2) Stream/Intertidal Zone Interaction	NA	NA
(2) Longitudinal Tidal Flow	NA	NA
(2) Tidal Marsh Stream Stability	NA	NA
(3) Tidal Marsh Channel Stability	NA	NA
(3) Tidal Marsh Stream Geomorphology	NA	NA
(1) Water Quality	LOW	LOW
(2) Baseflow	MEDIUM	MEDIUM
(2) Streamside Area Vegetation	LOW	LOW
(3) Upland Pollutant Filtration	LOW	LOW
(3) Thermoregulation	MEDIUM	MEDIUM
(2) Indicators of Stressors	YES	YES
(2) Aquatic Life Tolerance	OMITTED	NA
(2) Intertidal Zone Filtration	NA	NA
(1) Habitat	LOW	LOW
(2) In-stream Habitat	LOW	LOW
(3) Baseflow	MEDIUM	MEDIUM
(3) Substrate	LOW	LOW
(3) Stream Stability	HIGH	HIGH
(3) In-stream Habitat	LOW	LOW
(2) Stream-side Habitat	LOW	LOW
(3) Stream-side Habitat	LOW	LOW
(3) Thermoregulation	LOW	LOW
(2) Tidal Marsh In-stream Habitat	NA	NA
(3) Flow Restriction	NA	NA
	NA	NA
(3) Tidal Marsh Stream Stability (4) Tidal Marsh Channel Stability	NA	NA
(4) Tidal Marsh Stream Geomorphology		
	NA	NA
(3) Tidal Marsh In-stream Habitat	NA	NA
(2) Intertidal Zone	NA	NA
Overall	LOW	LOW

NC SAM FIELD ASSESSMENT FORM

Accompanies	User Manual Version 2.1
USACE AID #:	NCDWR #:
	notographs. Attach a copy of the USGS 7.5-minute topographic quadrangle,
	nultiple stream reaches will be evaluated on the same property, identify and
	form for each reach. See the NC SAM User Manual for detailed descriptions
	/Sketch" section if supplementary measurements were performed. See the
NC SAM User Manual for examples of additional measurements to NOTE EVIDENCE OF STRESSORS AFFECTING THE ASSESS	
	MENT AREA (do not need to be within the assessment area).
PROJECT/SITE INFORMATION: 1. Project name (if any): Carpenter Bottom Mitigation Site	2. Date of evaluation: 7/15/2019
3. Applicant/owner name: Wildlands	4. Assessor name/organization: M. Caddell
5. County: Gaston	6. Nearest named water body
7. River basin: Catawba	on USGS 7.5-minute quad: Beaverdam Creek
8. Site coordinates (decimal degrees, at lower end of assessment	: reach): 35.40476, 81.25860
STREAM INFORMATION: (depth and width can be approxima	tions)
Carpenter Reach	
1 (between UT1	
9. Site number (show on attached map): and Reach 2)	10. Length of assessment reach evaluated (feet): 1200
11. Channel depth from bed (in riffle, if present) to top of bank (fe	et): <u>5-7</u> Unable to assess channel depth. 13. Is assessment reach a swamp steam? <u>Yes</u> No
12. Channel width at top of bank (feet): 10-15 14. Feature type: ⊠Perennial flow ☐Intermittent flow ☐Tidal N	
STREAM CATEGORY INFORMATION:	
15. NC SAM Zone:	nont (P) 🛛 Inner Coastal Plain (I) 🗌 Outer Coastal Plain (O)
16. Estimated geomorphic	
valley shape (skip for	
Tidal Marsh Stream): (more sinuous stream, flatter va	lley slope) (less sinuous stream, steeper valley slope)
17. Watershed size: (skip ☐Size 1 (< 0.1 mi ²) ⊠Size 2	2 (0.1 to < 0.5 mi ²)
for Tidal Marsh Stream)	
ADDITIONAL INFORMATION:	
18. Were regulatory considerations evaluated? ⊠Yes □No If No □Section 10 water □Classified Trout Waters	
Essential Fish Habitat	☐ High Quality Waters/Outstanding Resource Waters
Publicly owned property INCDWR Riparian buffe	
Anadromous fish	CAMA Area of Environmental Concern (AEC)
Documented presence of a federal and/or state listed prote	
List species:	
Designated Critical Habitat (list species)	
19. Are additional stream information/supplementary measureme	nts included in "Notes/Sketch" section or attached? Yes No
1. Channel Water – assessment reach metric (skip for Size 1	streams and Tidal Marsh Streams)
\square A Water throughout assessment reach.	
B No flow, water in pools only.	
C No water in assessment reach.	
2. Evidence of Flow Restriction – assessment reach metric	
	t or riffle-pool sequence is severely affected by a flow restriction <u>or</u> fill to the
	quatic macrophytes or ponded water or impoundment on flood or ebb within
the assessment reach (examples: undersized or per beaver dams).	rched culverts, causeways that constrict the channel, tidal gates, debris jams,
$\square B$ Not A	
 Feature Pattern – assessment reach metric	ern (examples: straightening, modification above or below culvert).
\square B Not A	
4. Feature Longitudinal Profile – assessment reach metric	
	ered stream profile (examples: channel down-cutting, existing damming, over
	ation where appropriate channel profile has not reformed from any of these
disturbances).	· · · ·
B Not A	

5. Signs of Active Instability – assessment reach metric

Consider only current instability, not past events from which the stream has currently recovered. Examples of instability include active bank failure, active channel down-cutting (head-cut), active widening, and artificial hardening (such as concrete, gabion, rip-rap).

□A □B ⊠C < 10% of channel unstable

- 10 to 25% of channel unstable
- > 25% of channel unstable

Streamside Area Interaction - streamside area metric 6. Consider for the Left Bank (LB) and the Right Bank (RB).

RB LB

ΠA ⊡в

⊠C

- □A □B Little or no evidence of conditions that adversely affect reference interaction
- Moderate evidence of conditions (examples: berms, levees, down-cutting, aggradation, dredging) that adversely affect reference interaction (examples: limited streamside area access, disruption of flood flows through streamside area, leaky or intermittent bulkheads, causeways with floodplain constriction, minor ditching [including mosquito ditching])
- ⊠C Extensive evidence of conditions that adversely affect reference interaction (little to no floodplain/intertidal zone access [examples: causeways with floodplain and channel constriction, bulkheads, retaining walls, fill, stream incision, disruption of flood flows through streamside area] or too much floodplain/intertidal zone access [examples: impoundments, intensive mosquito ditching]) or floodplain/intertidal zone unnaturally absent or assessment reach is a man-made feature on an interstream divide

Water Quality Stressors - assessment reach/intertidal zone metric 7.

Check all that apply.

- Discolored water in stream or intertidal zone (milky white, blue, unnatural water discoloration, oil sheen, stream foam) ΠA
- Excessive sedimentation (burying of stream features or intertidal zone) Πв
- Noticeable evidence of pollutant discharges entering the assessment reach and causing a water quality problem
- Odor (not including natural sulfide odors) DD
- Current published or collected data indicating degraded water quality in the assessment reach. Cite source in "Notes/Sketch" ΠE section.
- □F Livestock with access to stream or intertidal zone
- ŪG Excessive algae in stream or intertidal zone
- Πн Degraded marsh vegetation in the intertidal zone (removal, burning, regular mowing, destruction, etc)
- Other: (explain in "Notes/Sketch" section)
- M Little to no stressors

Recent Weather - watershed metric (skip for Tidal Marsh Streams) 8.

- For Size 1 or 2 streams, D1 drought or higher is considered a drought; for Size 3 or 4 streams, D2 drought or higher is considered a drought.
- Drought conditions and no rainfall or rainfall not exceeding 1 inch within the last 48 hours ΠA
- ΠВ Drought conditions and rainfall exceeding 1 inch within the last 48 hours
- ⊠c No drought conditions

Large or Dangerous Stream – assessment reach metric 9.

Yes ⊠No Is stream is too large or dangerous to assess? If Yes, skip to Metric 13 (Streamside Area Ground Surface Condition).

10. Natural In-stream Habitat Types - assessment reach metric

10a. 🛛 Yes 🗌 No Degraded in-stream habitat over majority of the assessment reach (examples of stressors include excessive sedimentation, mining, excavation, in-stream hardening [for example, rip-rap], recent dredging, and snagging) (evaluate for Size 4 Coastal Plain streams only, then skip to Metric 12)

10b. Check all that occur (occurs if > 5% coverage of assessment reach) (skip for Size 4 Coastal Plain streams)

- Multiple aguatic macrophytes and aguatic mosses ΠA (include liverworts, lichens, and algal mats) ⊠в Multiple sticks and/or leaf packs and/or emergent vegetation ⊠C Multiple snags and logs (including lap trees) ΠD 5% undercut banks and/or root mats and/or roots
- in banks extend to the normal wetted perimeter
- E Little or no habitat

Check for Tidal Marsh Streams Only Marsh Cheams	
--	--

5% oysters or other natural hard bottoms Submerged aquatic vegetation Low-tide refugia (pools) Sand bottom 5% vertical bank along the marsh Little or no habitat

11. Bedform and Substrate – assessment reach metric (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)

- 11a. 🛛 Yes No Is assessment reach in a natural sand-bed stream? (skip for Coastal Plain streams)
- 11b. Bedform evaluated. Check the appropriate box(es).
 - ⊠Α Riffle-run section (evaluate 11c)
 - ⊠В Pool-glide section (evaluate 11d)
 - ПС Natural bedform absent (skip to Metric 12, Aquatic Life)
- 11c. In riffle sections, check all that occur below the normal wetted perimeter of the assessment reach whether or not submerged. Check at least one box in each row (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams). Not Present (NP) = absent, Rare (R) = present but < 10%, Common (C) = > 10-40%, Abundant (A) = > 40-70%, Predominant (P) = > 70%. Cumulative percentages should not exceed 100% for each assessment reach. ND р C ۸

к 		Bedrock/saprolite Boulder (256 – 4096 mm)
		Cobble (64 – 256 mm) Gravel (2 – 64 mm) Sand (.062 – 2 mm) Silt/clay (< 0.062 mm) Detritus Artificial (rip-rap, concrete, etc.)

11d. Yes No Are pools filled with sediment? (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)

12. Aquatic Life – assessment reach metric (skip for Tidal Marsh Streams)

- 12a. ⊠Yes □No Was an in-stream aquatic life assessment performed as described in the User Manual? If No, select one of the following reasons and skip to Metric 13. No Water Other:
- 12b. Xes No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
 - Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. >1
 - Adult frogs

1

 \boxtimes

- Aquatic reptiles
- Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)
- Beetles
- Caddisfly larvae (T)
- Asian clam (Corbicula)
- Crustacean (isopod/amphipod/crayfish/shrimp)
- Dipterans Mayfly larvae (E)
- Megaloptera (alderfly, fishfly, dobsonfly larvae)
- Midges/mosquito larvae
- Mosquito fish (*Gambusia*) or mud minnows (*Umbra pygmaea*)
- Mussels/Clams (not Corbicula)
 - Other fish Salamanders/tadpoles
 - Snails
 - Stonefly larvae (P)
 - Tipulid larvae
 - Worms/leeches

13. Streamside Area Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types)

Consider for the Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff. LB RB

ΠA	ΠA	Little or no alteration to water storage capacity over a majority of the streamside area
□в	□в	Moderate alteration to water storage capacity over a majority of the streamside area
⊠C	⊠C	Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction,
		livestock disturbance, buildings, man-made levees, drainage pipes)

14. Streamside Area Water Storage - streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Consider for the Left Bank (LB) and the Right Bank (RB) of the streamside area.

LB	RB
ΠA	ΠA
□в	□в
⊠C	⊠C

- Majority of streamside area with depressions able to pond water ≥ 6 inches deep
- Majority of streamside area with depressions able to pond water 3 to 6 inches deep
- Majority of streamside area with depressions able to pond water < 3 inches deep $\boxtimes C$

15. Wetland Presence – streamside area metric (skip for Tidal Marsh Streams)

Consider for the Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the normal wetted perimeter of assessment reach. RB

- LB ×Ν
 - ×Ν Are wetlands present in the streamside area?
- ΠN ΠN

16. Baseflow Contributors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)

Check all contributors within the assessment reach or within view of and draining to the assessment reach.

- ⊠Α Streams and/or springs (jurisdictional discharges)
- ⊡в Ponds (include wet detention basins; do not include sediment basins or dry detention basins)
- □с Obstruction passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir)
- ΔD Evidence of bank seepage or sweating (iron in water indicates seepage)
- ⊠Ε Stream bed or bank soil reduced (dig through deposited sediment if present)
- □F None of the above

17. Baseflow Detractors – assessment area metric (skip for Tidal Marsh Streams)

Check all that apply.

Evidence of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation) ΠA

□в Obstruction not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) □с Urban stream (\geq 24% impervious surface for watershed)

- Evidence that the streamside area has been modified resulting in accelerated drainage into the assessment reach ΔD
- ΠE Assessment reach relocated to valley edge
- ΠF None of the above

18. Shading – assessment reach metric (skip for Tidal Marsh Streams)

- Consider aspect. Consider "leaf-on" condition.
- ΠA Stream shading is appropriate for stream category (may include gaps associated with natural processes)
- ⊠В Degraded (example: scattered trees)
- □С Stream shading is gone or largely absent

Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out

	$ \begin{array}{cccc} LB & RB & LB \\ \boxtimes A & \boxtimes A & \square A \\ \square B & \square B & \square B \\ \square C & \square C & \square C \\ \square D & \square D & \square C \end{array} $	oded
20.		 streamside area metric (skip for Tidal Marsh Streams) bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width). Mature forest Non-mature woody vegetation <u>or</u> modified vegetation structure Herbaceous vegetation with or without a strip of trees < 10 feet wide Maintained shrubs Little or no vegetation
21.	Buffer Stressors Check all approp within 30 feet of st If none of the foll Abuts < 30 LB RB LB A A A B B B B	 streamside area metric (skip for Tidal Marsh Streams) riate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is tream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). owing stressors occurs on either bank, check here and skip to Metric 22: D feet 30-50 feet RB LB RB A A A A Row crops B B B Maintained turf C C C Pasture (no livestock)/commercial horticulture
22.		treamside area metric (skip for Tidal Marsh Streams) bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width). Medium to high stem density Low stem density No wooded riparian buffer <u>or</u> predominantly herbaceous species <u>or</u> bare ground
23.		getated Buffer – streamside area metric (skip for Tidal Marsh Streams) vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. The total length of buffer breaks is < 25 percent. The total length of buffer breaks is between 25 and 50 percent. The total length of buffer breaks is > 50 percent.
24.		Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse. Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or
	⊠c ⊠c	communities with non-native invasive species present, but not dominant, over a large portion of the expected strata <u>or</u> communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent <u>or</u> communities with non-native invasive species dominant over a large portion of expected strata <u>or</u> communities composed of planted stands of non-characteristic species <u>or</u> communities inappropriately composed of a single species <u>or</u> no vegetation.
25.	25a. ∐Yes ⊠ If No, select	ssessment reach metric (skip for all Coastal Plain streams) No Was conductivity measurement recorded? one of the following reasons. No Water □Other: ox corresponding to the conductivity measurement (units of microsiemens per centimeter). □B 46 to < 67 □C 67 to < 79 □D 79 to < 230 □E ≥ 230

Notes/Sketch:

Draft NC SAM Stream Rating Sheet Accompanies User Manual Version 2.1

Stream Site Name	Carpenter Bottom Mitigation Site	Date of Assessment	7/15/2019	
Stream Category	Pa2	Assessor Name/Organization	M. Caddell	
Notes of Field Asses	sment Form (Y/N)		NO	
Presence of regulato	ry considerations (Y/N)		YES	
•	ory considerations (Y/N) ormation/supplementary measu	rements included (Y/N)	YES NO	

Function Class Rating Summary	USACE/ All Streams	NCDWR Intermitten
(1) Hydrology	LOW	
(2) Baseflow	HIGH	
(2) Flood Flow	LOW	
(3) Streamside Area Attenuation	LOW	
(4) Floodplain Access	LOW	
(4) Wooded Riparian Buffer	LOW	
(4) Microtopography	LOW	
(3) Stream Stability	LOW	
(4) Channel Stability	LOW	
(4) Sediment Transport	MEDIUM	
(4) Stream Geomorphology	LOW	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA	
(2) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Channel Stability	NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	HIGH	
(2) Baseflow	HIGH	
(2) Streamside Area Vegetation	HIGH	
(3) Upland Pollutant Filtration	HIGH	
(3) Thermoregulation	MEDIUM	
(2) Indicators of Stressors	NO	
(2) Aquatic Life Tolerance	HIGH	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	LOW	
(2) In-stream Habitat	MEDIUM	
(3) Baseflow	HIGH	
(3) Substrate	MEDIUM	
(3) Stream Stability	LOW	
(3) In-stream Habitat	MEDIUM	
(2) Stream-side Habitat	LOW	
(3) Stream-side Habitat	LOW	
(3) Thermoregulation	MEDIUM	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction	NA	
(3) Tidal Marsh Stream Stability	NA	
(3) Inder Marsh Stream Stability (4) Tidal Marsh Channel Stability	NA	
(4) Tidal Marsh Stream Geomorphology	NA	
(4) Tidal Marsh In-stream Habitat	NA	
(2) Intertidal Zone	NA NA	
Overall	LOW	

NC SAM FIELD ASSESSMENT FORM

		Accompanies User Manual Version 2.1
US		D #: NCDWR #:
INS	STRUCTI	IONS: Attach a sketch of the assessment area and photographs. Attach a copy of the USGS 7.5-minute topographic quadrangle,
		ne location of the stream reach under evaluation. If multiple stream reaches will be evaluated on the same property, identify and
		eaches on the attached map, and include a separate form for each reach. See the NC SAM User Manual for detailed descriptions
		ations of requested information. Record in the "Notes/Sketch" section if supplementary measurements were performed. See the
		ser Manual for examples of additional measurements that may be relevant.
		ENCE OF STRESSORS AFFECTING THE ASSESSMENT AREA (do not need to be within the assessment area).
		SITE INFORMATION:
		ame (if any): Carpenter Bottom 2. Date of evaluation: 7/15/2019
		/owner name: Wildlands 4. Assessor name/organization: M. Caddell
	County:	Gaston 6. Nearest named water body
	River bas	
		dinates (decimal degrees, at lower end of assessment reach): 35.40764, -81.25987
51		IFORMATION: (depth and width can be approximations) Carpenter Reach
		1 (between UT2 &
9	Site numb	ber (show on attached map): UT1) 10. Length of assessment reach evaluated (feet): 450
		I depth from bed (in riffle, if present) to top of bank (feet): 6 Unable to assess channel depth.
		I width at top of bank (feet): 15 13. Is assessment reach a swamp steam? Yes No
		type: Perennial flow Intermittent flow Tidal Marsh Stream
-		
15.	. NC SAN	I Zone: ☐ Mountains (M) ⊠ Piedmont (P) ☐ Inner Coastal Plain (I) ☐ Outer Coastal Plain (O)
16.	. Estimate	ed geomorphic
		nape (skip for
	Tidal Ma	arsh Stream): (more sinuous stream, flatter valley slope) (less sinuous stream, steeper valley slope)
17.	. Watersh	ned size: (skip \Box Size 1 (< 0.1 mi ²) \Box Size 2 (0.1 to < 0.5 mi ²) \Box Size 3 (0.5 to < 5 mi ²) \Box Size 4 (≥ 5 mi ²)
	for Tida	Il Marsh Stream)
AD	DITIONA	AL INFORMATION:
18.	. Were reg	gulatory considerations evaluated? 🖾 Yes 🔲 No If Yes, check all that apply to the assessment area.
	Sectio	on 10 water Classified Trout Waters Water Supply Watershed (
	Esser	ntial Fish Habitat Primary Nursery Area High Quality Waters/Outstanding Resource Waters
	Public	cly owned property INCDWR Riparian buffer rule in effect INutrient Sensitive Waters
	Anadı	romous fish
	Docu	mented presence of a federal and/or state listed protected species within the assessment area.
	List s	pecies:
	Desig	gnated Critical Habitat (list species)
19.	. Are addi	itional stream information/supplementary measurements included in "Notes/Sketch" section or attached? Yes No
1.	⊠A □B	I Water – assessment reach metric (skip for Size 1 streams and Tidal Marsh Streams) Water throughout assessment reach. No flow, water in pools only.
	□c	No water in assessment reach.
2.	Evidenc	e of Flow Restriction – assessment reach metric
	ΜA	At least 10% of assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction or fill to the
		point of obstructing flow or a channel choked with aquatic macrophytes or ponded water or impoundment on flood or ebb within
		the assessment reach (examples: undersized or perched culverts, causeways that constrict the channel, tidal gates, debris jame
		beaver dams).
	□в	Not A
3.	Feature	Pattern – assessment reach metric
	ΠA	A majority of the assessment reach has altered pattern (examples: straightening, modification above or below culvert).
	⊠в	Not Á
4.	Fosture	I anaitudinal Profile - assessment reach metric
		Longitudinal Profile – assessment reach metric Majority of assessment reach has a substantially altered stream profile (examples: channel down-cutting, existing damming, over
		widening, active aggradation, dredging, and excavation where appropriate channel profile has not reformed from any of thes disturbances).

□в Not A

5. Signs of Active Instability – assessment reach metric

Consider only current instability, not past events from which the stream has currently recovered. Examples of instability include active bank failure, active channel down-cutting (head-cut), active widening, and artificial hardening (such as concrete, gabion, rip-rap).

- □A □B ⊠C < 10% of channel unstable
 - 10 to 25% of channel unstable
- > 25% of channel unstable

Streamside Area Interaction - streamside area metric 6. Consider for the Left Bank (LB) and the Right Bank (RB).

RB LB

ΠA ⊡в

⊠C

- □A □B Little or no evidence of conditions that adversely affect reference interaction
- Moderate evidence of conditions (examples: berms, levees, down-cutting, aggradation, dredging) that adversely affect reference interaction (examples: limited streamside area access, disruption of flood flows through streamside area, leaky or intermittent bulkheads, causeways with floodplain constriction, minor ditching [including mosquito ditching])
- ⊠C Extensive evidence of conditions that adversely affect reference interaction (little to no floodplain/intertidal zone access [examples: causeways with floodplain and channel constriction, bulkheads, retaining walls, fill, stream incision, disruption of flood flows through streamside area] or too much floodplain/intertidal zone access [examples: impoundments, intensive mosquito ditching]) or floodplain/intertidal zone unnaturally absent or assessment reach is a man-made feature on an interstream divide

Water Quality Stressors - assessment reach/intertidal zone metric 7.

Check all that apply.

- Discolored water in stream or intertidal zone (milky white, blue, unnatural water discoloration, oil sheen, stream foam) ΠA
- Excessive sedimentation (burying of stream features or intertidal zone) Πв
- Noticeable evidence of pollutant discharges entering the assessment reach and causing a water quality problem
- Odor (not including natural sulfide odors) DD
- Current published or collected data indicating degraded water quality in the assessment reach. Cite source in "Notes/Sketch" DE section.
- ⊠F Livestock with access to stream or intertidal zone
- ŪG Excessive algae in stream or intertidal zone
- Πн Degraded marsh vegetation in the intertidal zone (removal, burning, regular mowing, destruction, etc)
- Other: (explain in "Notes/Sketch" section)
- ΠJ Little to no stressors

Recent Weather - watershed metric (skip for Tidal Marsh Streams) 8.

- For Size 1 or 2 streams, D1 drought or higher is considered a drought; for Size 3 or 4 streams, D2 drought or higher is considered a drought.
- Drought conditions and no rainfall or rainfall not exceeding 1 inch within the last 48 hours ΠA
- ΠВ Drought conditions and rainfall exceeding 1 inch within the last 48 hours
- ⊠c No drought conditions

Large or Dangerous Stream – assessment reach metric 9.

Yes ⊠No Is stream is too large or dangerous to assess? If Yes, skip to Metric 13 (Streamside Area Ground Surface Condition).

10. Natural In-stream Habitat Types - assessment reach metric

10a. 🛛 Yes 🗌 No Degraded in-stream habitat over majority of the assessment reach (examples of stressors include excessive sedimentation, mining, excavation, in-stream hardening [for example, rip-rap], recent dredging, and snagging) (evaluate for Size 4 Coastal Plain streams only, then skip to Metric 12)

10b. Check all that occur (occurs if > 5% coverage of assessment reach) (skip for Size 4 Coastal Plain streams)

- Multiple aguatic macrophytes and aguatic mosses ΠA (include liverworts, lichens, and algal mats) ⊠в Multiple sticks and/or leaf packs and/or emergent
- vegetation ⊠C Multiple snags and logs (including lap trees)
- ΠD 5% undercut banks and/or root mats and/or roots
- in banks extend to the normal wetted perimeter
- E Little or no habitat

Check for Tidal Marsh Streams Only ☐ ☐ ☐ ☐ M C ☐ H D ⊣	
---	--

5% oysters or other natural hard bottoms Submerged aquatic vegetation Low-tide refugia (pools) Sand bottom 5% vertical bank along the marsh Little or no habitat

11. Bedform and Substrate – assessment reach metric (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)

- 11a. 🛛 Yes No Is assessment reach in a natural sand-bed stream? (skip for Coastal Plain streams)
- 11b. Bedform evaluated. Check the appropriate box(es).
 - ⊠Α Riffle-run section (evaluate 11c)
 - ⊠В Pool-glide section (evaluate 11d)
 - ПС Natural bedform absent (skip to Metric 12, Aquatic Life)
- 11c. In riffle sections, check all that occur below the normal wetted perimeter of the assessment reach whether or not submerged. Check at least one box in each row (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams). Not Present (NP) = absent, Rare (R) = present but < 10%, Common (C) = > 10-40%, Abundant (A) = > 40-70%, Predominant (P) = > 70%. Cumulative percentages should not exceed 100% for each assessment reach. ND р C ۸

					Bedrock/saprolite Boulder (256 – 4096 mm) Cobble (64 – 256 mm) Gravel (2 – 64 mm) Sand (.062 – 2 mm) Silt/clay (< 0.062 mm) Detritus Artificial (rip-rap, concrete, etc.)
--	--	--	--	--	--

11d. Yes No Are pools filled with sediment? (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)

12. Aquatic Life – assessment reach metric (skip for Tidal Marsh Streams)

- 12a. ⊠Yes □No Was an in-stream aquatic life assessment performed as described in the User Manual? If No, select one of the following reasons and skip to Metric 13. No Water Other:
- 12b. Xes No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
 - Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. >1
 - Adult frogs

1

- Aquatic reptiles
- Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)
- Beetles
- Caddisfly larvae (T)
- Asian clam (Corbicula)
- Crustacean (isopod/amphipod/crayfish/shrimp)
- Dipterans
- Mayfly larvae (E) Megaloptera (alderfly, fishfly, dobsonfly larvae)
- Midges/mosquito larvae
- Mosquito fish (*Gambusia*) or mud minnows (*Umbra pygmaea*)
- Mussels/Clams (not Corbicula)
 - Other fish Salamanders/tadpoles
 - Snails
 - Stonefly larvae (P)
 - Tipulid larvae
 - Worms/leeches

13. Streamside Area Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types)

Consider for the Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff. LB RB

ΠA	ΠA	Little or no alteration to water storage capacity over a majority of the streamside area
□в	□В	Moderate alteration to water storage capacity over a majority of the streamside area
⊠C	⊠C	Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction,
		livestock disturbance, buildings, man-made levees, drainage pipes)

14. Streamside Area Water Storage - streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Consider for the Left Bank (LB) and the Right Bank (RB) of the streamside area.

LB	RB
ΠA	ΠA
□В	□В
⊠C	⊠C

- Majority of streamside area with depressions able to pond water ≥ 6 inches deep
- Majority of streamside area with depressions able to pond water 3 to 6 inches deep
- Majority of streamside area with depressions able to pond water < 3 inches deep $\boxtimes C$

15. Wetland Presence – streamside area metric (skip for Tidal Marsh Streams)

Consider for the Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the normal wetted perimeter of assessment reach. RB

- LB ×Ν
 - ΠY Are wetlands present in the streamside area?
- ΠN ΜN

16. Baseflow Contributors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)

Check all contributors within the assessment reach or within view of and draining to the assessment reach.

- ⊠Α Streams and/or springs (jurisdictional discharges)
- ⊡в Ponds (include wet detention basins; do not include sediment basins or dry detention basins)
- □с Obstruction passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir)
- ΔD Evidence of bank seepage or sweating (iron in water indicates seepage)
- ⊠Ε Stream bed or bank soil reduced (dig through deposited sediment if present)
- □F None of the above

17. Baseflow Detractors – assessment area metric (skip for Tidal Marsh Streams)

Check all that apply.

Evidence of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation) ΠA

□в Obstruction not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) □с Urban stream (\geq 24% impervious surface for watershed)

- Evidence that the streamside area has been modified resulting in accelerated drainage into the assessment reach ΔD
- ΠE Assessment reach relocated to valley edge
- ΠF None of the above

18. Shading – assessment reach metric (skip for Tidal Marsh Streams)

- Consider aspect. Consider "leaf-on" condition.
- ΠA Stream shading is appropriate for stream category (may include gaps associated with natural processes)
- ⊠В Degraded (example: scattered trees)
- □С Stream shading is gone or largely absent

19.	Buffer Width - streamside area metric	(ski	n for	Tidal	Marsh	Streams
13.	Dunei Widun – Sueamside area metric	(SRI	pior	riuai	11101 311	oueams

Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out

	$ \begin{array}{c} LB & RB & LB \\ \boxtimes A & \boxtimes A & \square A \\ \square B & \square B & \square B \\ \square C & \square C & \square C \end{array} $	noded RBA \square A≥ 100 feet wide or extends to the edge of the watershedB \square BFrom 50 to < 100 feet wideC \square CFrom 30 to < 50 feet wideD \square DFrom 10 to < 30 feet wide
20.		 streamside area metric (skip for Tidal Marsh Streams) bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width). Mature forest Non-mature woody vegetation <u>or</u> modified vegetation structure Herbaceous vegetation with or without a strip of trees < 10 feet wide Maintained shrubs Little or no vegetation
21.	Check all appropwithin 30 feet of sIf none of the folAbuts< 3LBRBLBAAABBCC	 streamside area metric (skip for Tidal Marsh Streams) priate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is tream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). lowing stressors occurs on either bank, check here and skip to Metric 22: 0 feet 30-50 feet RB LB RB A A A A A A Row crops B B B Maintained turf C C C C Pasture (no livestock)/commercial horticulture D ØD ØD ØD Pasture (active livestock use)
22.		streamside area metric (skip for Tidal Marsh Streams) bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width). Medium to high stem density Low stem density No wooded riparian buffer <u>or</u> predominantly herbaceous species <u>or</u> bare ground
23.	-	getated Buffer – streamside area metric (skip for Tidal Marsh Streams) vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. The total length of buffer breaks is < 25 percent. The total length of buffer breaks is between 25 and 50 percent. The total length of buffer breaks is > 50 percent.
24.		Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse. Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or
	⊠c ⊠c	communities with non-native invasive species present, but not dominant, over a large portion of the expected strata <u>or</u> communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent <u>or</u> communities with non-native invasive species dominant over a large portion of expected strata <u>or</u> communities composed of planted stands of non-characteristic species <u>or</u> communities inappropriately composed of a single species <u>or</u> no vegetation.
25.	25a. ∐Yes ⊠ If No, select	ssessment reach metric (skip for all Coastal Plain streams) No Was conductivity measurement recorded? t one of the following reasons. No Water Other: oox corresponding to the conductivity measurement (units of microsiemens per centimeter).

Notes/Sketch:

Draft NC SAM Stream Rating Sheet Accompanies User Manual Version 2.1

Stream Site Name	Carpenter Bottom Date of Asses	sment	7/15/2019	
Stream Category	Pa2 Assessor Name/Organ		M. Caddel	
5,				
Notes of Field Asses	ssment Form (Y/N)		NO	
Presence of regulate	bry considerations (Y/N)		YES	
Additional stream inf	formation/supplementary measurements included (Y/N)		NO	
NC SAM feature typ	e (perennial, intermittent, Tidal Marsh Stream)		Perennia	l
			USACE/	NCDWR
	Function Class Rating Summary	A	II Streams	Intermittent
	(1) Hydrology		LOW	
	(2) Baseflow		HIGH	
	(2) Flood Flow		LOW	
	(3) Streamside Area Attenuation		LOW	
	(4) Floodplain Access		LOW	
	(4) Wooded Riparian Buffer		MEDIUM	
	(4) Microtopography		LOW	
	(3) Stream Stability		LOW	
	(4) Channel Stability		LOW	
	(4) Sediment Transport		MEDIUM	
	(4) Stream Geomorphology		MEDIUM	
	(2) Stream/Intertidal Zone Interaction		NA	
	(2) Longitudinal Tidal Flow		NA	
	(2) Tidal Marsh Stream Stability		NA	
	(3) Tidal Marsh Channel Stability		NA	
	(3) Tidal Marsh Stream Geomorpholog		NA	
	(1) Water Quality		MEDIUM	
	(2) Baseflow		HIGH	
	(2) Streamside Area Vegetation		LOW	
	(3) Upland Pollutant Filtration		LOW	
	(3) Thermoregulation		MEDIUM	
	(2) Indicators of Stressors		YES	
	(2) Aquatic Life Tolerance		HIGH	
	(2) Intertidal Zone Filtration		NA	
	(1) Habitat			
	(2) In-stream Habitat			
	(3) Baseflow			
	(3) Substrate			
	(3) Stream Stability			
	(3) In-stream Habitat		MEDIUM	
	(2) Stream-side Habitat		LOW	
	(3) Stream-side Habitat		LOW	
	(3) Thermoregulation		MEDIUM	
	(2) Tidal Marsh In-stream Habitat		NA	
	(3) Flow Restriction		NA	
	(3) Tidal Marsh Stream Stability		NA	
	(4) Tidal Marsh Channel Stability		NA	
	(4) Tidal Marsh Stream Geomorpholog	ју	NA	
	(3) Tidal Marsh In-stream Habitat		NA	
	(2) Intertidal Zone		NA	
	Overall		LOW	

NC SAM FIELD ASSESSMENT FORM

		Acco	mpanies User Ma	nual Version	n 2.1		
USACE AID				NCDWR			
						7.5-minute topographic quadrangle,	
						on the same property, identify and	
		•	•			ser Manual for detailed descriptions	
					pplementary measu	arements were performed. See the	
		les of additional measu DRS AFFECTING THE	•		t need to be within	the assessment area).	
PROJECT/S	SITE INFORMATION:						
1. Project na		arpenter Bottom Mitiga		. Date of eval			
		/ildlands			ame/organization:	M. Caddell	
5. County:		aston	6		ned water body		
7. River bas	-	atawba	<u> </u>		.5-minute quad:	Beaverdam Creek	
		ees, at lower end of as		35.40876	6, -81.26006		
STREAM IN	IFORMATION: (depti	h and width can be a					
		Carpenter 1 (betwee					
9 Site numb	per (show on attached			noth of asses	sment reach evalua	ated (feet): 200	
		iffle, if present) to top of		3 - 4		nable to assess channel depth.	
	width at top of bank (ich a swamp steam		
14. Feature	type: Perennial flo	w Intermittent flow					
			Diadmant (D)		Canatal Diain (I)		
15. NC SAM	i Zone:	Mountains (M)	Piedmont (P)		Coastal Plain (I)	Outer Coastal Plain (O)	
	ed geomorphic nape (skip for				🗆 В	5	
		(more sinuous stream	n flatter vallev slop	e)	(less sinuous str	eam, steeper valley slope)	
	-	Size 1 (< 0.1 mi ²)	Size 2 (0.1 to	-	□Size 3 (0.5 to <		
	I Marsh Stream)			< 0.5 mm)			
	L INFORMATION:						
18. Were reg	18. Were regulatory considerations evaluated? Xes No If Yes, check all that apply to the assessment area.						
	on 10 water	Classified Tre				shed (□I □II □III ⊠IV □V)	
	ntial Fish Habitat	Primary Nurs	•			/Outstanding Resource Waters	
	cly owned property		arian buffer rule in		lutrient Sensitive W		
	romous fish	□303(d) List				onmental Concern (AEC)	
		a federal and/or state li	isted protected spe	cies within th	e assessment area		
	pecies:	t (list species)					
□Designated Critical Habitat (list species) 19. Are additional stream information/supplementary measurements included in "Notes/Sketch" section or attached? □Yes ⊠No							
10. Are addi		non/supplementary m					
1. Channel	Water – assessmer	nt reach metric (skip	for Size 1 stream	s and Tidal N	Marsh Streams)		
ΠA	Water throughout as						
⊠B	No flow, water in poo						
□c	No water in assessm	nent reach.					
2. Evidenc	e of Flow Restriction	n – assessment reac	h metric				
⊠A						cted by a flow restriction or fill to the	
						impoundment on flood or ebb within	
	beaver dams).	ch (examples: unders	ized of perched cu	ivens, cause	ways that constrict t	the channel, tidal gates, debris jams,	
□в	Not A						
		ut voob motrie					
3. Feature □A	Pattern – assessme		tered nattern (evar	nnles: straigh	tening modification	above or below culvert).	
⊠B	Not A		lereu pallerri (exar	npies. straigh	iteriirig, mounicatior	Tabove of below curvert).	
		e – assessment reach		om profilo (or	complos: shapped d	lown outting ovicting domming	
⊠A						lown-cutting, existing damming, over has not reformed from any of these	
	disturbances).	gradulon, drodying, a				the first role more any or these	
□в	Not A						

5. Signs of Active Instability – assessment reach metric

Consider only current instability, not past events from which the stream has currently recovered. Examples of instability include active bank failure, active channel down-cutting (head-cut), active widening, and artificial hardening (such as concrete, gabion, rip-rap).

- □A ⊠B □C < 10% of channel unstable
 - 10 to 25% of channel unstable
- > 25% of channel unstable

6. Streamside Area Interaction – streamside area metric Consider for the Left Bank (LB) and the Right Bank (RB).

Consid	ier for tr
LB	RB
ΠA	ΠA
ØВ	⊠B

ПС

- A Little or no evidence of conditions that adversely affect reference interaction
- Moderate evidence of conditions (examples: berms, levees, down-cutting, aggradation, dredging) that adversely affect reference interaction (examples: limited streamside area access, disruption of flood flows through streamside area, leaky or intermittent bulkheads, causeways with floodplain constriction, minor ditching [including mosquito ditching])
- C Extensive evidence of conditions that adversely affect reference interaction (little to no floodplain/intertidal zone access [examples: causeways with floodplain and channel constriction, bulkheads, retaining walls, fill, stream incision, disruption of flood flows through streamside area] <u>or</u> too much floodplain/intertidal zone access [examples: impoundments, intensive mosquito ditching]) <u>or</u> floodplain/intertidal zone unnaturally absent <u>or</u> assessment reach is a man-made feature on an interstream divide

7. Water Quality Stressors – assessment reach/intertidal zone metric

Check all that apply.

- Discolored water in stream or intertidal zone (milky white, blue, unnatural water discoloration, oil sheen, stream foam)
- B Excessive sedimentation (burying of stream features or intertidal zone)
- C Noticeable evidence of pollutant discharges entering the assessment reach and causing a water quality problem
- D Odor (not including natural sulfide odors)
- E Current published or collected data indicating degraded water quality in the assessment reach. Cite source in "Notes/Sketch" section.
- F Livestock with access to stream or intertidal zone
- G Excessive algae in stream or intertidal zone
- H Degraded marsh vegetation in the intertidal zone (removal, burning, regular mowing, destruction, etc)
- Other: _____ (explain in "Notes/Sketch" section)
- J Little to no stressors

8. Recent Weather – watershed metric (skip for Tidal Marsh Streams)

- For Size 1 or 2 streams, D1 drought or higher is considered a drought; for Size 3 or 4 streams, D2 drought or higher is considered a drought.
- A Drought conditions and no rainfall or rainfall not exceeding 1 inch within the last 48 hours
- B Drought conditions and rainfall exceeding 1 inch within the last 48 hours
- C No drought conditions

9. Large or Dangerous Stream – assessment reach metric

Yes No Is stream is too large or dangerous to assess? If Yes, skip to Metric 13 (Streamside Area Ground Surface Condition).

10. Natural In-stream Habitat Types - assessment reach metric

10a. Yes Degraded in-stream habitat over majority of the assessment reach (examples of stressors include excessive sedimentation, mining, excavation, in-stream hardening [for example, rip-rap], recent dredging, and snagging) (evaluate for Size 4 Coastal Plain streams only, then skip to Metric 12)

10b. Check all that occur (occurs if > 5% coverage of assessment reach) (skip for Size 4 Coastal Plain streams)

- A Multiple aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)
- □B Multiple sticks and/or leaf packs and/or emergent vegetation
 □C Multiple snags and logs (including lap trees)
- D 5% undercut banks and/or root mats and/or roots
- \boxtimes E Little or no habitat

Check for Tidal Marsh Streams Only Only A C I H D 1 M C I H D 1	
--	--

5% oysters or other natural hard bottoms Submerged aquatic vegetation Low-tide refugia (pools) Sand bottom 5% vertical bank along the marsh Little or no habitat

11. Bedform and Substrate – assessment reach metric (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)

- 11a. TYes XNo Is assessment reach in a natural sand-bed stream? (skip for Coastal Plain streams)
- 11b. Bedform evaluated. Check the appropriate box(es).
 - A Riffle-run section (evaluate 11c)
 - B Pool-glide section (evaluate 11d)
 - C Natural bedform absent (skip to Metric 12, Aquatic Life)
- 11c. In riffle sections, check all that occur below the normal wetted perimeter of the assessment reach whether or not submerged. Check at least one box in each row (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams). Not Present (NP) = absent, Rare (R) = present but ≤ 10%, Common (C) = > 10-40%, Abundant (A) = > 40-70%, Predominant (P) = > 70%. Cumulative percentages should not exceed 100% for each assessment reach.
 NP
 P
 C
 A
 P

			Bedrock/saprolite Boulder (256 – 4096mm) Cobble (64 – 256mm) Gravel (2 – 64mm) Sand (.062 – 2mm)
H			()
			Silt/clay (< 0.062 mm)
			Detritus Artificial (rip-rap, concrete, etc.)

11d. Yes XNo Are pools filled with sediment? (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)

12. Aquatic Life – assessment reach metric (skip for Tidal Marsh Streams)

- ⊠No Was an in-stream aquatic life assessment performed as described in the User Manual? 12a. 🗌 Yes If No, select one of the following reasons and skip to Metric 13. No Water Other:
- 12b. Yes ⊠No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
 - Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. >1

Adult frogs
Aquatic reptiles
Aquatic macrophy
Beetles
Caddisfly larvae (
Asian clam (Corb
Crustacean (isopo
Damselfly and dra
Dipterans
Mayfly larvae (E)
Megaloptera (alde
Midges/mosquito

1

- Aquatic reptiles
 - Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)
- Beetles
- Caddisfly larvae (T)
- Asian clam (Corbicula)
- Crustacean (isopod/amphipod/crayfish/shrimp)
- Dipterans
- Mayfly larvae (E) Megaloptera (alderfly, fishfly, dobsonfly larvae)
- Midges/mosquito larvae
- Mosquito fish (*Gambusia*) or mud minnows (*Umbra pygmaea*)
- Mussels/Clams (not Corbicula)
 - Other fish Salamanders/tadpoles

 - Stonefly larvae (P)
 - Tipulid larvae
 - Worms/leeches

13. Streamside Area Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types)

Consider for the Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff. LB RB

ΠA	ΠA	Little or no alteration to water storage capacity over a majority of the streamside area
□В	□В	Moderate alteration to water storage capacity over a majority of the streamside area
⊠C	⊠C	Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction,
		livestock disturbance, buildings, man-made levees, drainage pipes)

14. Streamside Area Water Storage - streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Consider for the Left Bank (LB) and the Right Bank (RB) of the streamside area.

0	
В	RB
A	ΠA
∃В	□в

- Majority of streamside area with depressions able to pond water ≥ 6 inches deep
- В Majority of streamside area with depressions able to pond water 3 to 6 inches deep
- □C Majority of streamside area with depressions able to pond water < 3 inches deep

15. Wetland Presence – streamside area metric (skip for Tidal Marsh Streams)

Consider for the Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the normal wetted perimeter of assessment reach. RB

- LB ΠY
- ΠY Are wetlands present in the streamside area?
- ΜN ΜN

16. Baseflow Contributors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)

Check all contributors within the assessment reach or within view of and draining to the assessment reach.

- ⊠Α Streams and/or springs (jurisdictional discharges)
- ⊡в Ponds (include wet detention basins; do not include sediment basins or dry detention basins)
- □С Obstruction passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir)
- DD Evidence of bank seepage or sweating (iron in water indicates seepage)
- ΞE Stream bed or bank soil reduced (dig through deposited sediment if present)
- ∏F None of the above

17. Baseflow Detractors – assessment area metric (skip for Tidal Marsh Streams)

Check all that apply.

Evidence of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation) ΠA

□в Obstruction not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) □с Urban stream (\geq 24% impervious surface for watershed)

- Evidence that the streamside area has been modified resulting in accelerated drainage into the assessment reach ΔD
- Assessment reach relocated to valley edge ΠE
- ΠF None of the above

18. Shading – assessment reach metric (skip for Tidal Marsh Streams)

- Consider aspect. Consider "leaf-on" condition.
- ΠA Stream shading is appropriate for stream category (may include gaps associated with natural processes)
- ⊠В Degraded (example: scattered trees)
- □С Stream shading is gone or largely absent

Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out

	to the first break.VegetatedWoodedLBRBLBRBLBRB $\boxtimes A$ $\square A$ $\square A$ $\supseteq B$ BBFrom 50 to < 100 feet wide $\square C$ $\square C$ $\square C$ $\square C$ $\square D$ $\square D$ $\square D$ $\square D$ $\square D$ $\square D$ $\square B$ $\square D$ $\square D$ $\square D$ $\square D$ $\square D$ $\square D$ $\square B$			
20.	Buffer Structure – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width). LB RB □A □A Mature forest □B □B Non-mature woody vegetation or modified vegetation structure □C □C			
21.	D D Maintained shrubs E E Little or no vegetation Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is			
	within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). If none of the following stressors occurs on either bank, check here and skip to Metric 22: Abuts < 30 feet 30-50 feet LB RB LB RB A A A A B B B B B B B B C C C C Q D Q D A D Q Pasture (active livestock use)			
22.	Stem Density – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width). LB RB \[\Beta A \] Medium to high stem density \[\Beta B B \] Low stem density \[\Beta B B \] Low stem density \[\Beta C C \] No wooded riparian buffer or predominantly herbaceous species or bare ground			
23.	Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams) Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. LB RB ⊠A ⊠A The total length of buffer breaks is < 25 percent. B B The total length of buffer breaks is between 25 and 50 percent. C C The total length of buffer breaks is > 50 percent.			
24.	 Vegetative Composition – streamside area metric (skip for Tidal Marsh Streams) Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat. LB RB A A Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, 			
	 with non-native invasive species absent or sparse. B B			
~-	 communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent <u>or</u> communities with non-native invasive species dominant over a large portion of expected strata <u>or</u> communities composed of planted stands of non-characteristic species <u>or</u> communities inappropriately composed of a single species <u>or</u> no vegetation. 			
25.	Conductivity – assessment reach metric (skip for all Coastal Plain streams) 25a. Yes No Was conductivity measurement recorded? If No, select one of the following reasons. No Water Other:			
	25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter). $\square A < 46$ $\square B$ 46 to < 67 $\square C$ 67 to < 79 $\square D$ 79 to < 230 $\square E \ge 230$			

Notes/Sketch:

Draft NC SAM Stream Rating Sheet Accompanies User Manual Version 2.1

Stream Site Name	Carpenter Bottom Mitigation Site	Date of Assessment	7/15/2019	
Stream Category	Pa1	Assessor Name/Organization	M. Caddell	
Additional stream inf	esment Form (Y/N) ory considerations (Y/N) formation/supplementary measu e (perennial, intermittent, Tidal N	/arsh Stream)	NO YES NO Intermittent	

	USACE/	NCDWR
Function Class Rating Summary	All Streams	Intermittent
(1) Hydrology	MEDIUM	MEDIUM
(2) Baseflow	MEDIUM	MEDIUM
(2) Flood Flow	MEDIUM	MEDIUM
(3) Streamside Area Attenuation	MEDIUM	MEDIUM
(4) Floodplain Access	MEDIUM	MEDIUM
(4) Wooded Riparian Buffer	MEDIUM	MEDIUM
(4) Microtopography	LOW	LOW
(3) Stream Stability	MEDIUM	MEDIUM
(4) Channel Stability	MEDIUM	MEDIUM
(4) Sediment Transport	HIGH	HIGH
(4) Stream Geomorphology	MEDIUM	MEDIUM
(2) Stream/Intertidal Zone Interaction	NA	NA
(2) Longitudinal Tidal Flow	NA	NA
(2) Tidal Marsh Stream Stability	NA	NA
(3) Tidal Marsh Channel Stability	NA	NA
(3) Tidal Marsh Stream Geomorphology	NA	NA
(1) Water Quality	LOW	LOW
(2) Baseflow	MEDIUM	MEDIUM
(2) Streamside Area Vegetation	LOW	LOW
(3) Upland Pollutant Filtration	LOW	LOW
(3) Thermoregulation	MEDIUM	MEDIUM
(2) Indicators of Stressors	YES	YES
(2) Aquatic Life Tolerance	LOW	NA
(2) Intertidal Zone Filtration	NA	NA
(1) Habitat	LOW	LOW
(2) In-stream Habitat	MEDIUM	MEDIUM
(3) Baseflow	MEDIUM	MEDIUM
(3) Substrate	HIGH	HIGH
(3) Stream Stability	MEDIUM	MEDIUM
(3) In-stream Habitat	LOW	LOW
(2) Stream-side Habitat	LOW	LOW
(3) Stream-side Habitat	LOW	LOW
(3) Thermoregulation	MEDIUM	MEDIUM
(2) Tidal Marsh In-stream Habitat	NA	NA
(3) Flow Restriction	NA	NA
(3) Tidal Marsh Stream Stability	NA	NA
(3) Tidal Marsh Stream Stability (4) Tidal Marsh Channel Stability	NA	NA
(4) Tidal Marsh Stream Geomorphology	NA	NA
(3) Tidal Marsh In-stream Habitat	NA	NA
(2) Intertidal Zone	NA NA	NA
Overall	LOW	LOW

NC SAM FIELD ASSESSMENT FORM

	Accompanies User Manual Version 2.1			
USACE AID #:	NCDWR #:			
INSTRUCTIONS: Attach a sk	etch of the assessment area and photographs. Attach a copy of the USGS 7.5-minute topographic quadrangle,			
	tream reach under evaluation. If multiple stream reaches will be evaluated on the same property, identify and			
	ched map, and include a separate form for each reach. See the NC SAM User Manual for detailed descriptions			
and explanations of requested	I information. Record in the "Notes/Sketch" section if supplementary measurements were performed. See the			
	mples of additional measurements that may be relevant.			
NOTE EVIDENCE OF STRES	SORS AFFECTING THE ASSESSMENT AREA (do not need to be within the assessment area).			
PROJECT/SITE INFORMATION				
1. Project name (if any):	Carpenter Bottom Mitigation Site 2. Date of evaluation: 7/15/2019			
3. Applicant/owner name:	Wildlands 4. Assessor name/organization: M. Caddell			
5. County:	Gaston 6. Nearest named water body			
7. River basin:	Catawba on USGS 7.5-minute quad: Beaverdam Creek			
8. Site coordinates (decimal d	egrees, at lower end of assessment reach): 35.40411, -81.25776			
STREAM INFORMATION: (d	epth and width can be approximations)			
	Carpenter Reach			
9. Site number (show on attac				
	n riffle, if present) to top of bank (feet): 3-5 Unable to assess channel depth.			
12. Channel width at top of ba				
	I flow Intermittent flow ITidal Marsh Stream			
STREAM CATEGORY INFOR				
15. NC SAM Zone:	☐ Mountains (M)			
16. Estimated geomorphic				
valley shape (skip for				
Tidal Marsh Stream):	(more sinuous stream, flatter valley slope) (less sinuous stream, steeper valley slope)			
17. Watershed size: (skip	Size 1 (< 0.1 mi ²) Size 2 (0.1 to < 0.5 mi ²)			
for Tidal Marsh Stream)				
ADDITIONAL INFORMATION				
18. Were regulatory considera	tions evaluated? \Box Yes \Box No If Yes, check all that apply to the assessment area.			
□Section 10 water □Classified Trout Waters □Water Supply Watershed (□I □II □III □II □V)				
Essential Fish Habitat Primary Nursery Area High Quality Waters/Outstanding Resource Waters				
Publicly owned property INCDWR Riparian buffer rule in effect Nutrient Sensitive Waters				
Anadromous fish 303(d) List CAMA Area of Environmental Concern (AEC)				
Documented presence of a federal and/or state listed protected species within the assessment area.				
List species:				
Designated Critical Hab				
T9. Are additional stream info	mation/supplementary measurements included in "Notes/Sketch" section or attached? Yes No			
1. Channel Water – assessi	nent reach metric (skip for Size 1 streams and Tidal Marsh Streams)			
	t assessment reach.			
\square B No flow, water in				
$\square C$ No water in asse				

2. Evidence of Flow Restriction – assessment reach metric

- At least 10% of assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction <u>or</u> fill to the point of obstructing flow <u>or</u> a channel choked with aquatic macrophytes <u>or</u> ponded water <u>or</u> impoundment on flood or ebb within the assessment reach (examples: undersized or perched culverts, causeways that constrict the channel, tidal gates, debris jams, beaver dams).
- B Not A

3. Feature Pattern – assessment reach metric

□A A majority of the assessment reach has altered pattern (examples: straightening, modification above or below culvert).
 ⊠B Not A

4. Feature Longitudinal Profile – assessment reach metric

- Majority of assessment reach has a substantially altered stream profile (examples: channel down-cutting, existing damming, over widening, active aggradation, dredging, and excavation where appropriate channel profile has not reformed from any of these disturbances).
 Not A
- 5. Signs of Active Instability assessment reach metric

Consider only current instability, not past events from which the stream has currently recovered. Examples of instability include active bank failure, active channel down-cutting (head-cut), active widening, and artificial hardening (such as concrete, gabion, rip-rap).

- A < 10% of channel unstable
- B 10 to 25% of channel unstable
- C > 25% of channel unstable

6. Streamside Area Interaction – streamside area metric r the Left Bank (LB) and the Right Bank (RB).

Consid	der for the	е сеп
LB	RB	
ΠA	ΜA	Litt
⊠В	ПВ	Мо

- Little or no evidence of conditions that adversely affect reference interaction
- ⊠A ⊡B Moderate evidence of conditions (examples: berms, levees, down-cutting, aggradation, dredging) that adversely affect reference interaction (examples: limited streamside area access, disruption of flood flows through streamside area, leaky or intermittent bulkheads, causeways with floodplain constriction, minor ditching [including mosquito ditching])
- ПС Extensive evidence of conditions that adversely affect reference interaction (little to no floodplain/intertidal zone access [examples: causeways with floodplain and channel constriction, bulkheads, retaining walls, fill, stream incision, disruption of flood flows through streamside area] or too much floodplain/intertidal zone access [examples: impoundments, intensive mosquito ditching]) or floodplain/intertidal zone unnaturally absent or assessment reach is a man-made feature on an interstream divide

Water Quality Stressors - assessment reach/intertidal zone metric 7.

Check all that apply.

ПС

- Discolored water in stream or intertidal zone (milky white, blue, unnatural water discoloration, oil sheen, stream foam) ΠA
- Excessive sedimentation (burying of stream features or intertidal zone) Πв
- Noticeable evidence of pollutant discharges entering the assessment reach and causing a water quality problem
- Odor (not including natural sulfide odors) DD
- Current published or collected data indicating degraded water quality in the assessment reach. Cite source in "Notes/Sketch" ΠE section.
- □F Livestock with access to stream or intertidal zone
- ŪG Excessive algae in stream or intertidal zone
- Πн Degraded marsh vegetation in the intertidal zone (removal, burning, regular mowing, destruction, etc)
- Other: (explain in "Notes/Sketch" section)
- ΜJ Little to no stressors

Recent Weather - watershed metric (skip for Tidal Marsh Streams) 8.

- For Size 1 or 2 streams, D1 drought or higher is considered a drought; for Size 3 or 4 streams, D2 drought or higher is considered a drought.
- Drought conditions and no rainfall or rainfall not exceeding 1 inch within the last 48 hours ΠA
- ΠВ Drought conditions and rainfall exceeding 1 inch within the last 48 hours
- ⊠c No drought conditions

Large or Dangerous Stream – assessment reach metric 9.

Yes ⊠No Is stream is too large or dangerous to assess? If Yes, skip to Metric 13 (Streamside Area Ground Surface Condition).

10. Natural In-stream Habitat Types - assessment reach metric

10a. 🛛 Yes 🗌 No Degraded in-stream habitat over majority of the assessment reach (examples of stressors include excessive sedimentation, mining, excavation, in-stream hardening [for example, rip-rap], recent dredging, and snagging) (evaluate for Size 4 Coastal Plain streams only, then skip to Metric 12)

10b. Check all that occur (occurs if > 5% coverage of assessment reach) (skip for Size 4 Coastal Plain streams)

- Multiple aguatic macrophytes and aguatic mosses $\square A$
- (include liverworts, lichens, and algal mats) ⊠в Multiple sticks and/or leaf packs and/or emergent vegetation
- ПС Multiple snags and logs (including lap trees)
- ΠD 5% undercut banks and/or root mats and/or roots
- in banks extend to the normal wetted perimeter
- E Little or no habitat

Check for Tidal Marsh Streams Only Marsh Ctreams	
---	--

5% oysters or other natural hard bottoms Submerged aquatic vegetation Low-tide refugia (pools) Sand bottom 5% vertical bank along the marsh Little or no habitat

11. Bedform and Substrate – assessment reach metric (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)

- No Is assessment reach in a natural sand-bed stream? (skip for Coastal Plain streams) 11a. TYes
- 11b. Bedform evaluated. Check the appropriate box(es).
 - ⊠Α Riffle-run section (evaluate 11c)
 - ⊠В Pool-glide section (evaluate 11d)
 - ПС Natural bedform absent (skip to Metric 12, Aquatic Life)
- 11c. In riffle sections, check all that occur below the normal wetted perimeter of the assessment reach whether or not submerged. Check at least one box in each row (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams). Not Present (NP) = absent, Rare (R) = present but < 10%, Common (C) = > 10-40%, Abundant (A) = > 40-70%, Predominant (P) = > 70%. Cumulative percentages should not exceed 100% for each assessment reach. ND р C ۸

					Bedrock/saprolite Boulder (256 – 4096 mm) Cobble (64 – 256 mm) Gravel (2 – 64 mm) Sand (.062 – 2 mm) Silt/clay (< 0.062 mm) Detritus Artificial (rip-rap, concrete, etc.)
--	--	--	--	--	--

11d. Yes No Are pools filled with sediment? (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)

12. Aquatic Life – assessment reach metric (skip for Tidal Marsh Streams)

- 12a. ⊠Yes □No Was an in-stream aquatic life assessment performed as described in the User Manual? If No, select one of the following reasons and skip to Metric 13. No Water Other:
- 12b. Xes No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
 - Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. >1

[Adult	frogs	

1

- Aquatic reptiles
 - Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)
- Beetles
- Caddisfly larvae (T)
- Asian clam (Corbicula)
- Crustacean (isopod/amphipod/cravfish/shrimp)
- Damselfly and dragonfly larvae
- Dipterans
- Mayfly larvae (E) Megaloptera (alderfly, fishfly, dobsonfly larvae)
- Midges/mosquito larvae
- Mosquito fish (Gambusia) or mud minnows (Umbra pygmaea)
- Mussels/Clams (not Corbicula)
 - Other fish
 - Salamanders/tadpoles
 - Stonefly larvae (P)
 - Tipulid larvae
 - Worms/leeches

13. Streamside Area Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types)

Consider for the Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff. LB RB

ΠA	ΠA	Little or no alteration to water storage capacity over a majority of the streamside area
⊠В	⊠В	Moderate alteration to water storage capacity over a majority of the streamside area
□C	□C	Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction,
		livestock disturbance, buildings, man-made levees, drainage pipes)

14. Streamside Area Water Storage - streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Consider for the Left Bank (LB) and the Right Bank (RB) of the streamside area.

LB	RB
ΠA	ΠA
⊠В	⊠B
□с	□C

- Majority of streamside area with depressions able to pond water ≥ 6 inches deep
- Majority of streamside area with depressions able to pond water 3 to 6 inches deep
- Majority of streamside area with depressions able to pond water < 3 inches deep ШС

15. Wetland Presence – streamside area metric (skip for Tidal Marsh Streams)

Consider for the Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the normal wetted perimeter of assessment reach. RB

- LB ×Ν
 - ΠY Are wetlands present in the streamside area?
- ΠN ΜN

16. Baseflow Contributors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)

Check all contributors within the assessment reach or within view of and draining to the assessment reach.

- ⊠Α Streams and/or springs (jurisdictional discharges)
- ⊡в Ponds (include wet detention basins; do not include sediment basins or dry detention basins)
- □с Obstruction passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir)
- ΔD Evidence of bank seepage or sweating (iron in water indicates seepage)
- ⊠Ε Stream bed or bank soil reduced (dig through deposited sediment if present)
- □F None of the above

17. Baseflow Detractors – assessment area metric (skip for Tidal Marsh Streams)

Check all that apply.

Evidence of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation) ΠA

□в Obstruction not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) □с Urban stream (\geq 24% impervious surface for watershed)

- Evidence that the streamside area has been modified resulting in accelerated drainage into the assessment reach ΔD
- Assessment reach relocated to valley edge ΠE
- ΠF None of the above

18. Shading – assessment reach metric (skip for Tidal Marsh Streams)

- Consider aspect. Consider "leaf-on" condition.
- $\square A$ Stream shading is appropriate for stream category (may include gaps associated with natural processes)
- ΠВ Degraded (example: scattered trees)
- □С Stream shading is gone or largely absent

Buffer Width – streamside area metric (skip for Tidal Marsh St
--

Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out

	to the first break.VegetatedWoodedLBRBLBRBLBRB $\boxtimes A$ $\boxtimes A$ $\boxtimes A$ $\supseteq B$ $\boxtimes B$ From 50 to < 100 feet wide $\square C$ $\square C$ $\square C$ $\square D$ </th
20.	Buffer Structure – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width). LB RB △A Mature forest □B □B Non-mature woody vegetation or modified vegetation structure □C □C Herbaceous vegetation with or without a strip of trees < 10 feet wide □D □D Maintained shrubs
21.	E Little or no vegetation Buffer Stressors - streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet).
	If none of the following stressors occurs on either bank, check here and skip to Metric 22: Image: Stressors occurs on either bank, check here and skip to Metric 22: Image: Stressors occurs on either bank, check here and skip to Metric 22: Image: Stressors occurs on either bank, check here and skip to Metric 22: Image: Stressors occurs on either bank, check here and skip to Metric 22: Image: Stressors occurs of either bank, check here and skip to Metric 22: Image: Stressors occurs of either bank, check here and skip to Metric 22: Image: Stressors occurs of either bank, check here and skip to Metric 22: Image: Stressors occurs of either bank, check here and skip to Metric 22: Image: Stressors occurs occ
22.	Stem Density – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width). LB RB △A Medium to high stem density □B □B Low stem density □C □C No wooded riparian buffer or predominantly herbaceous species or bare ground
23.	Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams) Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. LB RB △A The total length of buffer breaks is < 25 percent. □B □B The total length of buffer breaks is between 25 and 50 percent. □C □C
24.	Vegetative Composition – streamside area metric (skip for Tidal Marsh Streams) Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat. LB RB $\Box A$ Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species,
	 with non-native invasive species absent or sparse. ✓B ✓B ✓B ✓B ✓B ✓B ✓C
25.	 C C Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent <u>or</u> communities with non-native invasive species dominant over a large portion of expected strata <u>or</u> communities composed of planted stands of non-characteristic species <u>or</u> communities inappropriately composed of a single species <u>or</u> no vegetation. Conductivity – assessment reach metric (skip for all Coastal Plain streams) 25a. Yes No Was conductivity measurement recorded? If No, select one of the following reasons. No Water Other:
	25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter). $\square A < 46 \qquad \square B 46 \text{ to } < 67 \qquad \square C 67 \text{ to } < 79 \qquad \square D 79 \text{ to } < 230 \qquad \square E \geq 230$

Notes/Sketch:

Draft NC SAM Stream Rating Sheet Accompanies User Manual Version 2.1

Stream Site Name	Carpenter Bottom Mitigation Site	Date of Assessment	7/15/2019	
Stream Category	Pb2	Assessor Name/Organization	M. Caddell	
Notos of Field Asso	semant Form (V/N)		NO	
Notes of Field Assessment Form (Y/N)			-	
Presence of regulatory considerations (Y/N)			YES	
Additional stream information/supplementary measurements included (Y/N)			NO	
NC SAM feature type (perennial, intermittent, Tidal Marsh Stream)			Perennial	

Function Class Rating Summary	USACE/ All Streams	NCDWR Intermitten
(1) Hydrology	HIGH	
(2) Baseflow	HIGH	
(2) Flood Flow	HIGH	
(3) Streamside Area Attenuation	HIGH	
(4) Floodplain Access	HIGH	
(4) Wooded Riparian Buffer	HIGH	
(4) Microtopography	NA	
(3) Stream Stability	HIGH	
(4) Channel Stability	HIGH	
(4) Sediment Transport	HIGH	
(4) Stream Geomorphology	HIGH	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA	
(2) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Channel Stability	NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	HIGH	
(2) Baseflow	HIGH	
(2) Streamside Area Vegetation	HIGH	
(3) Upland Pollutant Filtration	HIGH	
(3) Thermoregulation	HIGH	
(2) Indicators of Stressors	NO	
(2) Aquatic Life Tolerance	HIGH	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	HIGH	
(2) In-stream Habitat	HIGH	
(3) Baseflow	HIGH	
(3) Substrate	HIGH	
(3) Stream Stability	HIGH	
(3) In-stream Habitat	HIGH	
(2) Stream-side Habitat	HIGH	
(3) Stream-side Habitat	HIGH	
(3) Thermoregulation	HIGH	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction	NA	
(3) Tidal Marsh Stream Stability	NA	
(4) Tidal Marsh Channel Stability	NA	
(4) Tidal Marsh Stream Geomorphology	NA	
(3) Tidal Marsh In-stream Habitat	NA	
(2) Intertidal Zone	NA	
Overall	HIGH	

NC SAM FIELD ASSESSMENT FORM

	Accompanies User Manual Version 2.1	
USACE AID #:	NCDWR #:	
	tetch of the assessment area and photographs. Attach a copy of the USGS 7.5-minute topographic quadrangle,	
	stream reach under evaluation. If multiple stream reaches will be evaluated on the same property, identify and	
number all reaches on the atta	ached map, and include a separate form for each reach. See the NC SAM User Manual for detailed descriptions	
and explanations of requested	d information. Record in the "Notes/Sketch" section if supplementary measurements were performed. See the	
	mples of additional measurements that may be relevant.	
NOTE EVIDENCE OF STRES	SORS AFFECTING THE ASSESSMENT AREA (do not need to be within the assessment area).	
PROJECT/SITE INFORMATION	ON:	
1. Project name (if any):	Carpenter Bottom Mitigation Site 2. Date of evaluation: 7/15/2019	
3. Applicant/owner name:	Wildlands 4. Assessor name/organization: M. Caddell	
5. County:	Gaston 6. Nearest named water body	
7. River basin:	Catawba on USGS 7.5-minute quad: Beaverdam Creek	
	egrees, at lower end of assessment reach): 35.40762, -81.25980	
	epth and width can be approximations)	
9. Site number (show on attac		
	in riffle, if present) to top of bank (feet): 2-5 Unable to assess channel depth.	
12. Channel width at top of ba		
• •	I flow ⊠Intermittent flow □Tidal Marsh Stream	
STREAM CATEGORY INFOR		
15. NC SAM Zone:	🗌 Mountains (M) 🛛 Piedmont (P) 🗌 Inner Coastal Plain (I) 🗌 Outer Coastal Plain (O)	
16. Estimated geomorphic		
valley shape (skip for	—	
Tidal Marsh Stream):	(more sinuous stream, flatter valley slope) (less sinuous stream, steeper valley slope)	
17. Watershed size: (skip	Size 1 (< 0.1 mi ²) Size 2 (0.1 to < 0.5 mi ²) Size 3 (0.5 to < 5 mi ²) Size 4 (≥ 5 mi ²)	
for Tidal Marsh Stream)		
ADDITIONAL INFORMATION		
o ,	ations evaluated? \square Yes \square No If Yes, check all that apply to the assessment area.	
Section 10 water	□Classified Trout Waters □Water Supply Watershed (□I □II □II □II □V)	
Essential Fish Habitat	Primary Nursery Area High Quality Waters/Outstanding Resource Waters INCDWR Riparian buffer rule in effect INutrient Sensitive Waters	
Publicly owned property Anadromous fish		
	□ 303(d) List □ CAMA Area of Environmental Concern (AEC) of a federal and/or state listed protected species within the assessment area.	
List species:	or a reactar ana/or state instea protected species within the assessment area.	
Designated Critical Hab	litat (list species)	
	rmation/supplementary measurements included in "Notes/Sketch" section or attached? Yes No	
1. Channel Water – assessi	ment reach metric (skip for Size 1 streams and Tidal Marsh Streams)	
	t assessment reach.	
B No flow, water in pools only.		
C No water in asse	ssment reach.	
2. Evidence of Flow Restric	tion – assessment reach metric	
	assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction or fill to the	
point of obstructi	ng flow or a channel choked with aquatic macrophytes or ponded water or impoundment on flood or ebb within	

point of obstructing flow or a channel choked with aquatic macrophytes or ponded water or impoundment on flood or ebb within the assessment reach (examples: undersized or perched culverts, causeways that constrict the channel, tidal gates, debris jams, beaver dams). Not A

□в

3. Feature Pattern – assessment reach metric

- ⊠Α A majority of the assessment reach has altered pattern (examples: straightening, modification above or below culvert). ΠВ Not A
- 4. Feature Longitudinal Profile – assessment reach metric
 - ΠA Majority of assessment reach has a substantially altered stream profile (examples: channel down-cutting, existing damming, over widening, active aggradation, dredging, and excavation where appropriate channel profile has not reformed from any of these disturbances).
 - ⊠В Not A

Signs of Active Instability – assessment reach metric 5.

Consider only current instability, not past events from which the stream has currently recovered. Examples of instability include active bank failure, active channel down-cutting (head-cut), active widening, and artificial hardening (such as concrete, gabion, rip-rap).

< 10% of channel unstable ⊠В

10 to 25% of channel unstable

ШC > 25% of channel unstable

6. Streamside Area Interaction – streamside area metric Consider for the Left Bank (LB) and the Right Bank (RB).

Consid	aer for the
LB	RB
ΠA	ΠA
ПВ	ПВ

⊠C

- Little or no evidence of conditions that adversely affect reference interaction Moderate evidence of conditions (examples: berms, levees, down-cutting, a
- B Moderate evidence of conditions (examples: berms, levees, down-cutting, aggradation, dredging) that adversely affect reference interaction (examples: limited streamside area access, disruption of flood flows through streamside area, leaky or intermittent bulkheads, causeways with floodplain constriction, minor ditching [including mosquito ditching])
- Extensive evidence of conditions that adversely affect reference interaction (little to no floodplain/intertidal zone access [examples: causeways with floodplain and channel constriction, bulkheads, retaining walls, fill, stream incision, disruption of flood flows through streamside area] <u>or</u> too much floodplain/intertidal zone access [examples: impoundments, intensive mosquito ditching]) <u>or</u> floodplain/intertidal zone unnaturally absent <u>or</u> assessment reach is a man-made feature on an interstream divide

7. Water Quality Stressors – assessment reach/intertidal zone metric

Check all that apply.

- Discolored water in stream or intertidal zone (milky white, blue, unnatural water discoloration, oil sheen, stream foam)
- B Excessive sedimentation (burying of stream features or intertidal zone)
- C Noticeable evidence of pollutant discharges entering the assessment reach and causing a water quality problem
- D Odor (not including natural sulfide odors)
- E Current published or collected data indicating degraded water quality in the assessment reach. Cite source in "Notes/Sketch" section.
- F Livestock with access to stream or intertidal zone
- G Excessive algae in stream or intertidal zone
- Degraded marsh vegetation in the intertidal zone (removal, burning, regular mowing, destruction, etc)
- Other: _____ (explain in "Notes/Sketch" section)
- J Little to no stressors

8. Recent Weather – watershed metric (skip for Tidal Marsh Streams)

- For Size 1 or 2 streams, D1 drought or higher is considered a drought; for Size 3 or 4 streams, D2 drought or higher is considered a drought.
- A Drought conditions and no rainfall or rainfall not exceeding 1 inch within the last 48 hours
- B Drought conditions and rainfall exceeding 1 inch within the last 48 hours
- C No drought conditions

9. Large or Dangerous Stream – assessment reach metric

Yes No Is stream is too large or dangerous to assess? If Yes, skip to Metric 13 (Streamside Area Ground Surface Condition).

10. Natural In-stream Habitat Types - assessment reach metric

10a. Yes Degraded in-stream habitat over majority of the assessment reach (examples of stressors include excessive sedimentation, mining, excavation, in-stream hardening [for example, rip-rap], recent dredging, and snagging) (evaluate for Size 4 Coastal Plain streams only, then skip to Metric 12)

10b. Check all that occur (occurs if > 5% coverage of assessment reach) (skip for Size 4 Coastal Plain streams)

- □A Multiple aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)
 □B Multiple sticks and/or leaf packs and/or emergent vegetation
 □C Multiple snags and logs (including lap trees)
 □D 5% undercut banks and/or root mats and/or roots
- in banks extend to the normal wetted perimeter
- E Little or no habitat

Check for Tidal Marsh Streams Only	
--	--

5% oysters or other natural hard bottoms Submerged aquatic vegetation Low-tide refugia (pools) Sand bottom 5% vertical bank along the marsh Little or no habitat

11. Bedform and Substrate – assessment reach metric (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)

- 11a.
 Yes
 No Is assessment reach in a natural sand-bed stream? (skip for Coastal Plain streams)
- 11b. Bedform evaluated. Check the appropriate box(es).
 - A Riffle-run section (evaluate 11c)
 - B Pool-glide section (evaluate 11d)
 - C Natural bedform absent (skip to Metric 12, Aquatic Life)
- 11c. In riffle sections, check all that occur below the normal wetted perimeter of the assessment reach whether or not submerged. Check at least one box in each row (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams). Not Present (NP) = absent, Rare (R) = present but ≤ 10%, Common (C) = > 10-40%, Abundant (A) = > 40-70%, Predominant (P) = > 70%. Cumulative percentages should not exceed 100% for each assessment reach.
 NP
 P
 C
 A
 P

					Bedrock/saprolite Boulder (256 – 4096 mm) Cobble (64 – 256 mm) Gravel (2 – 64 mm) Sand (.062 – 2 mm) Silt/clay (< 0.062 mm) Detritus Artificial (rip-rap, concrete, etc.)
--	--	--	--	--	--

11d. Tyes XNo Are pools filled with sediment? (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)

12. Aquatic Life – assessment reach metric (skip for Tidal Marsh Streams)

- 12a. ⊠Yes □No Was an in-stream aquatic life assessment performed as described in the User Manual? If No, select one of the following reasons and skip to Metric 13. No Water Other:
- 12b. Xes No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
 - Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. >1
 - Adult frogs

1

- Aquatic reptiles
- Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)
- Beetles
- Caddisfly larvae (T)
- Asian clam (Corbicula)
- Crustacean (isopod/amphipod/crayfish/shrimp)
- Dipterans
 - Mayfly larvae (E)
 - Megaloptera (alderfly, fishfly, dobsonfly larvae)
 - Midges/mosquito larvae
 - Mosquito fish (*Gambusia*) or mud minnows (*Umbra pygmaea*)
- Mussels/Clams (not Corbicula)
 - Other fish Salamanders/tadpoles
 - Snails
 - Stonefly larvae (P)
 - Tipulid larvae
 - Worms/leeches

13. Streamside Area Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types)

Consider for the Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff. LB RB

ΠA	ΠA	Little or no alteration to water storage capacity over a majority of the streamside area
□в	□в	Moderate alteration to water storage capacity over a majority of the streamside area
⊠C	⊠C	Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction,
		livestock disturbance, buildings, man-made levees, drainage pipes)

14. Streamside Area Water Storage - streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Consider for the Left Bank (LB) and the Right Bank (RB) of the streamside area.

LB	RB
ΠA	ΠA
□В	□в
⊠C	⊠C

- Majority of streamside area with depressions able to pond water ≥ 6 inches deep
- Majority of streamside area with depressions able to pond water 3 to 6 inches deep
- Majority of streamside area with depressions able to pond water < 3 inches deep $\boxtimes C$

15. Wetland Presence – streamside area metric (skip for Tidal Marsh Streams)

Consider for the Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the normal wetted perimeter of assessment reach. RB

- LB ΠY
 - ×Ν Are wetlands present in the streamside area?
- ΜN ΠN

16. Baseflow Contributors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)

Check all contributors within the assessment reach or within view of and draining to the assessment reach.

- ΠA Streams and/or springs (jurisdictional discharges)
- ⊡в Ponds (include wet detention basins; do not include sediment basins or dry detention basins)
- □с Obstruction passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir)
- DD Evidence of bank seepage or sweating (iron in water indicates seepage)
- ΞE Stream bed or bank soil reduced (dig through deposited sediment if present)
- □F None of the above

17. Baseflow Detractors – assessment area metric (skip for Tidal Marsh Streams)

Check all that apply.

- Evidence of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation) ΠA
- □в Obstruction not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) □с Urban stream (\geq 24% impervious surface for watershed)
- Evidence that the streamside area has been modified resulting in accelerated drainage into the assessment reach ΔD
- ΠE Assessment reach relocated to valley edge
- ΠF None of the above

18. Shading – assessment reach metric (skip for Tidal Marsh Streams)

- Consider aspect. Consider "leaf-on" condition.
- ΠA Stream shading is appropriate for stream category (may include gaps associated with natural processes)
- ⊠В Degraded (example: scattered trees)
- □С Stream shading is gone or largely absent

Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out

	LB RB LB A A A A B B B A C C C C D D D	oded
20.	Consider for left LB RB □A □A □B □B □C □C □D □D	 streamside area metric (skip for Tidal Marsh Streams) bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width). Mature forest Non-mature woody vegetation <u>or</u> modified vegetation structure Herbaceous vegetation with or without a strip of trees < 10 feet wide Maintained shrubs
21.	Check all appropwithin 30 feet of sIf none of the folAbuts< 3LBRBLBAAABBCC	Little or no vegetation - streamside area metric (skip for Tidal Marsh Streams) priate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is tream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). lowing stressors occurs on either bank, check here and skip to Metric 22: 0 feet 0 feet 0 feet 0 feet 0 A A A A A A A A A A A A A A A A A A A
22.		streamside area metric (skip for Tidal Marsh Streams) bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width). Medium to high stem density Low stem density No wooded riparian buffer <u>or</u> predominantly herbaceous species <u>or</u> bare ground
23.	-	getated Buffer – streamside area metric (skip for Tidal Marsh Streams) vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. The total length of buffer breaks is < 25 percent. The total length of buffer breaks is between 25 and 50 percent. The total length of buffer breaks is > 50 percent.
24.		Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse. Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or
	⊠c ⊠c	communities with non-native invasive species present, but not dominant, over a large portion of the expected strata <u>or</u> communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent <u>or</u> communities with non-native invasive species dominant over a large portion of expected strata <u>or</u> communities composed of planted stands of non-characteristic species <u>or</u> communities inappropriately composed of a single species <u>or</u> no vegetation.
25.	25a. □Yes ⊠ If No, select	ssessment reach metric (skip for all Coastal Plain streams) No Was conductivity measurement recorded? to one of the following reasons. No Water Other:

Notes/Sketch:

Draft NC SAM Stream Rating Sheet Accompanies User Manual Version 2.1

Stream Site Name	Carpenter Bottom Mitigation Site	Date of Assessment	7/15/2019		
Stream Category Pa1 As		Assessor Name/Organization	M. Caddell		
Notes of Field Assessment Form (Y/N) NO Presence of regulatory considerations (Y/N) YES					
Additional stream information/supplementary measurements included (Y/N) NC SAM feature type (perennial, intermittent, Tidal Marsh Stream)			NO Intermittent		
Additional stream inf					

	USACE/	NCDWR
Function Class Rating Summary	All Streams	Intermitten
(1) Hydrology	LOW	LOW
(2) Baseflow	MEDIUM	MEDIUM
(2) Flood Flow	LOW	LOW
(3) Streamside Area Attenuation	LOW	LOW
(4) Floodplain Access	LOW	LOW
(4) Wooded Riparian Buffer	HIGH	HIGH
(4) Microtopography	LOW	LOW
(3) Stream Stability	MEDIUM	MEDIUM
(4) Channel Stability	MEDIUM	MEDIUM
(4) Sediment Transport	MEDIUM	MEDIUM
(4) Stream Geomorphology	MEDIUM	MEDIUM
(2) Stream/Intertidal Zone Interaction	NA	NA
(2) Longitudinal Tidal Flow	NA	NA
(2) Tidal Marsh Stream Stability	NA	NA
(3) Tidal Marsh Channel Stability	NA	NA
(3) Tidal Marsh Stream Geomorphology	NA	NA
(1) Water Quality	LOW	LOW
(2) Baseflow	MEDIUM	MEDIUM
(2) Streamside Area Vegetation	LOW	LOW
(3) Upland Pollutant Filtration	LOW	LOW
(3) Thermoregulation	MEDIUM	MEDIUM
(2) Indicators of Stressors	YES	YES
(2) Aquatic Life Tolerance	LOW	NA
(2) Intertidal Zone Filtration	NA	NA
(1) Habitat	LOW	MEDIUM
(2) In-stream Habitat	LOW	MEDIUM
(3) Baseflow	MEDIUM	MEDIUM
(3) Substrate	MEDIUM	MEDIUM
(3) Stream Stability	MEDIUM	MEDIUM
(3) In-stream Habitat	LOW	MEDIUM
(2) Stream-side Habitat	MEDIUM	MEDIUM
(3) Stream-side Habitat	MEDIUM	MEDIUM
(3) Thermoregulation	MEDIUM	MEDIUM
(2) Tidal Marsh In-stream Habitat	NA	NA
(3) Flow Restriction	NA	NA
(3) Tidal Marsh Stream Stability	NA	NA
(4) Tidal Marsh Channel Stability	NA	NA
(4) Tidal Marsh Stream Geomorphology	NA	NA
(3) Tidal Marsh In-stream Habitat	NA	NA
(2) Intertidal Zone	NA	NA
Overall	LOW	LOW

NC SAM FIELD ASSESSMENT FORM

	Accompanies User	Manual Version 2.1
USACE AID #:		NCDWR #:
INSTRUCTIONS: Attach a ske	tch of the assessment area and photogr	aphs. Attach a copy of the USGS 7.5-minute topographic quadrangle,
and circle the location of the sti	ream reach under evaluation. If multiple	e stream reaches will be evaluated on the same property, identify and
number all reaches on the attac	hed map, and include a separate form for	or each reach. See the NC SAM User Manual for detailed descriptions
		ch" section if supplementary measurements were performed. See the
	nples of additional measurements that m	
NOTE EVIDENCE OF STRESS	SORS AFFECTING THE ASSESSMENT	Γ AREA (do not need to be within the assessment area).
PROJECT/SITE INFORMATIO	N:	
1. Project name (if any):	Carpenter Bottom Mitigation Site	2. Date of evaluation: 7/15/2019
3. Applicant/owner name:	Wildlands	4. Assessor name/organization: M. Caddell
5. County:	Gaston	6. Nearest named water body
	Catawba	on USGS 7.5-minute quad: Beaverdam Creek
	grees, at lower end of assessment reach	
	pth and width can be approximations	
9. Site number (show on attach		Length of assessment reach evaluated (feet): 250
	riffle, if present) to top of bank (feet):	3-4 Unable to assess channel depth.
12. Channel width at top of ban		assessment reach a swamp steam?
	flow Intermittent flow Tidal Marsh	Stream
STREAM CATEGORY INFORM		
15. NC SAM Zone:	🗌 Mountains (M) 🛛 🖾 Piedmont (F	P) 🗌 Inner Coastal Plain (I) 🗌 Outer Coastal Plain (O)
16. Estimated geomorphic		
valley shape (skip for		
Tidal Marsh Stream):	(more sinuous stream, flatter valley sl	ope) (less sinuous stream, steeper valley slope)
17. Watershed size: (skip	⊠Size 1 (< 0.1 mi ²) □Size 2 (0.1	to < 0.5 mi ²) \Box Size 3 (0.5 to < 5 mi ²) \Box Size 4 (≥ 5 mi ²)
for Tidal Marsh Stream)		
ADDITIONAL INFORMATION:		
		heck all that apply to the assessment area.
Section 10 water	Classified Trout Waters	⊠Water Supply Watershed (□I □II □III ⊠IV □V)
Essential Fish Habitat	Primary Nursery Area	High Quality Waters/Outstanding Resource Waters
Publicly owned property	NCDWR Riparian buffer rule	
Anadromous fish	□303(d) List	CAMA Area of Environmental Concern (AEC)
·	f a federal and/or state listed protected s	pecies within the assessment area.
Designated Critical Habit		
19. Are additional stream inform	nation/supplementary measurements inc	cluded in "Notes/Sketch" section or attached? ☐Yes ⊠No
1. Channel Water – assessm	ent reach metric (skip for Size 1 strea	ame and Tidal March Streams)
	assessment reach.	
\square B No flow, water in p		
C No water in assess		
2. Evidence of Flow Restrict	ion – assessment reach metric	
		ffle-pool sequence is severely affected by a flow restriction or fill to the
		c macrophytes or ponded water or impoundment on flood or ebb within
		culverts, causeways that constrict the channel, tidal gates, debris jams,

□B Not A

beaver dams).

3. Feature Pattern – assessment reach metric

 A
 A majority of the assessment reach has altered pattern (examples: straightening, modification above or below culvert).

 B
 Not A

4. Feature Longitudinal Profile – assessment reach metric

- A Majority of assessment reach has a substantially altered stream profile (examples: channel down-cutting, existing damming, over widening, active aggradation, dredging, and excavation where appropriate channel profile has not reformed from any of these disturbances).
- B Not A

5. Signs of Active Instability – assessment reach metric

Consider only current instability, not past events from which the stream has currently recovered. Examples of instability include active bank failure, active channel down-cutting (head-cut), active widening, and artificial hardening (such as concrete, gabion, rip-rap).

A < 10% of channel unstable

B 10 to 25% of channel unstable

 $\square C$ > 25% of channel unstable

Streamside Area Interaction - streamside area metric 6. Consider for the Left Bank (LB) and the Right Bank (RB).

Consid	ier for th
LB	RB
ΠA	ΠA
□В	□В

⊠C

- □A □B Little or no evidence of conditions that adversely affect reference interaction
- Moderate evidence of conditions (examples: berms, levees, down-cutting, aggradation, dredging) that adversely affect reference interaction (examples: limited streamside area access, disruption of flood flows through streamside area, leaky or intermittent bulkheads, causeways with floodplain constriction, minor ditching [including mosquito ditching])
- ⊠C Extensive evidence of conditions that adversely affect reference interaction (little to no floodplain/intertidal zone access [examples: causeways with floodplain and channel constriction, bulkheads, retaining walls, fill, stream incision, disruption of flood flows through streamside area] or too much floodplain/intertidal zone access [examples: impoundments, intensive mosquito ditching]) or floodplain/intertidal zone unnaturally absent or assessment reach is a man-made feature on an interstream divide

Water Quality Stressors - assessment reach/intertidal zone metric 7.

Check all that apply.

- Discolored water in stream or intertidal zone (milky white, blue, unnatural water discoloration, oil sheen, stream foam) ΠA
- Excessive sedimentation (burying of stream features or intertidal zone) Πв
- Noticeable evidence of pollutant discharges entering the assessment reach and causing a water quality problem
- Odor (not including natural sulfide odors) DD
- Current published or collected data indicating degraded water quality in the assessment reach. Cite source in "Notes/Sketch" DE section.
- ⊠F Livestock with access to stream or intertidal zone
- ŪG Excessive algae in stream or intertidal zone
- Πн Degraded marsh vegetation in the intertidal zone (removal, burning, regular mowing, destruction, etc)
- Other: (explain in "Notes/Sketch" section)
- ΠJ Little to no stressors

Recent Weather - watershed metric (skip for Tidal Marsh Streams) 8.

- For Size 1 or 2 streams, D1 drought or higher is considered a drought; for Size 3 or 4 streams, D2 drought or higher is considered a drought.
- Drought conditions and no rainfall or rainfall not exceeding 1 inch within the last 48 hours ΠA
- ΠВ Drought conditions and rainfall exceeding 1 inch within the last 48 hours
- ⊠c No drought conditions

Large or Dangerous Stream – assessment reach metric 9.

Yes ⊠No Is stream is too large or dangerous to assess? If Yes, skip to Metric 13 (Streamside Area Ground Surface Condition).

10. Natural In-stream Habitat Types - assessment reach metric

10a. 🛛 Yes 🗌 No Degraded in-stream habitat over majority of the assessment reach (examples of stressors include excessive sedimentation, mining, excavation, in-stream hardening [for example, rip-rap], recent dredging, and snagging) (evaluate for Size 4 Coastal Plain streams only, then skip to Metric 12)

10b. Check all that occur (occurs if > 5% coverage of assessment reach) (skip for Size 4 Coastal Plain streams)

- Multiple aguatic macrophytes and aguatic mosses $\square A$
- (include liverworts, lichens, and algal mats) ΠВ Multiple sticks and/or leaf packs and/or emergent vegetation ⊠C Multiple snags and logs (including lap trees)
- ΠD 5% undercut banks and/or root mats and/or roots
- in banks extend to the normal wetted perimeter
- E Little or no habitat

Check for Tidal Marsh Streams Only Marsh 2	
---	--

5% oysters or other natural hard bottoms Submerged aquatic vegetation Low-tide refugia (pools) Sand bottom 5% vertical bank along the marsh Little or no habitat

11. Bedform and Substrate – assessment reach metric (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)

- No Is assessment reach in a natural sand-bed stream? (skip for Coastal Plain streams) 11a. TYes
- 11b. Bedform evaluated. Check the appropriate box(es).
 - ΠA Riffle-run section (evaluate 11c)
 - ⊠В Pool-glide section (evaluate 11d)
 - ПС Natural bedform absent (skip to Metric 12, Aquatic Life)
- 11c. In riffle sections, check all that occur below the normal wetted perimeter of the assessment reach whether or not submerged. Check at least one box in each row (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams). Not Present (NP) = absent, Rare (R) = present but < 10%, Common (C) = > 10-40%, Abundant (A) = > 40-70%, Predominant (P) = > 70%. Cumulative percentages should not exceed 100% for each assessment reach. ND P C ۸

					Bedrock/saprolite Boulder (256 – 4096 mm) Cobble (64 – 256 mm) Gravel (2 – 64 mm) Sand (.062 – 2 mm) Silt/clay (< 0.062 mm) Detritus Artificial (rip-rap, concrete, etc.)
--	--	--	--	--	--

11d. Yes No Are pools filled with sediment? (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)

12. Aquatic Life – assessment reach metric (skip for Tidal Marsh Streams)

- 12a. ⊠Yes □No Was an in-stream aquatic life assessment performed as described in the User Manual? If No, select one of the following reasons and skip to Metric 13. No Water Other:
- 12b. Xes □No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
 - Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. >1

Adult	t frogs	

1

- Aquatic reptiles
- Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)
- Beetles
- Caddisfly larvae (T)
- Asian clam (Corbicula)
- Crustacean (isopod/amphipod/crayfish/shrimp)
- - Dipterans Mayfly larvae (E)
 - Megaloptera (alderfly, fishfly, dobsonfly larvae)
 - Midges/mosquito larvae
 - Mosquito fish (*Gambusia*) or mud minnows (*Umbra pygmaea*)
- Mussels/Clams (not Corbicula)
 - Other fish Salamanders/tadpoles
 - Snails
 - Stonefly larvae (P)
 - Tipulid larvae
 - Worms/leeches

13. Streamside Area Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types)

Consider for the Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff. LB RB

ΠA	ΠA	Little or no alteration to water storage capacity over a majority of the streamside area
□в	□в	Moderate alteration to water storage capacity over a majority of the streamside area
⊠C	⊠C	Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction,
		livestock disturbance, buildings, man-made levees, drainage pipes)

14. Streamside Area Water Storage - streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Consider for the Left Bank (LB) and the Right Bank (RB) of the streamside area.

LB	RB
ΠA	ΠA
□в	□в
⊠C	⊠C

- Majority of streamside area with depressions able to pond water ≥ 6 inches deep
- Majority of streamside area with depressions able to pond water 3 to 6 inches deep
- Majority of streamside area with depressions able to pond water < 3 inches deep $\boxtimes C$

15. Wetland Presence – streamside area metric (skip for Tidal Marsh Streams)

Consider for the Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the normal wetted perimeter of assessment reach. RB

- LB ×Ν
 - ΠY Are wetlands present in the streamside area?
- ΠN ΜN

16. Baseflow Contributors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)

Check all contributors within the assessment reach or within view of and draining to the assessment reach.

- ΠA Streams and/or springs (jurisdictional discharges)
- ⊡в Ponds (include wet detention basins; do not include sediment basins or dry detention basins)
- □с Obstruction passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir)
- ΔD Evidence of bank seepage or sweating (iron in water indicates seepage)
- ⊠Ε Stream bed or bank soil reduced (dig through deposited sediment if present)
- □F None of the above

17. Baseflow Detractors – assessment area metric (skip for Tidal Marsh Streams)

Check all that apply.

Evidence of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation) ΠA

□в Obstruction not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) □с Urban stream (\geq 24% impervious surface for watershed)

- Evidence that the streamside area has been modified resulting in accelerated drainage into the assessment reach ΔD
- Assessment reach relocated to valley edge ΠE
- ΠF None of the above

18. Shading – assessment reach metric (skip for Tidal Marsh Streams)

- Consider aspect. Consider "leaf-on" condition.
- ΠA Stream shading is appropriate for stream category (may include gaps associated with natural processes)
- ⊠В Degraded (example: scattered trees)
- □С Stream shading is gone or largely absent

19.	Buffer Width - streamside area metric	(ski	n for	Tidal	Marsh	Streams
13.	Dunei Widun – Sueamside area metric	(SRI	pior	riuai	11101 311	oueams

Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out

	$ \begin{array}{ccc} LB & RB & LB \\ \boxtimes A & \boxtimes A & \square \\ \square B & \square B & \square \\ \square C & \square C & \square \end{array} $	boddedRBA \square A≥ 100 feet wide or extends to the edge of the watershedB \square BFrom 50 to < 100 feet wideC \square CD \square DFrom 10 to < 30 feet wide
20.		 streamside area metric (skip for Tidal Marsh Streams) bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width). Mature forest Non-mature woody vegetation or modified vegetation structure Herbaceous vegetation with or without a strip of trees < 10 feet wide Maintained shrubs Little or no vegetation
21.	Check all appropwithin 30 feet of sIf none of the foldAbuts< 3LBRBLBAAABBCC	s – streamside area metric (skip for Tidal Marsh Streams) priate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). Ilowing stressors occurs on either bank, check here and skip to Metric 22: □ 10 feet 30-50 feet RB LB RB A □ A □ A Row crops B □ B □ B Maintained turf C □ C □ C □ C □ C Pasture (no livestock)/commercial horticulture D ☑ D ☑ D ☑ D Pasture (active livestock use)
22.		streamside area metric (skip for Tidal Marsh Streams) t bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width). Medium to high stem density Low stem density No wooded riparian buffer <u>or</u> predominantly herbaceous species <u>or</u> bare ground
23.	-	getated Buffer – streamside area metric (skip for Tidal Marsh Streams) r vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. The total length of buffer breaks is < 25 percent. The total length of buffer breaks is between 25 and 50 percent. The total length of buffer breaks is > 50 percent.
24.		Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse. Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or
	⊠c ⊠c	communities with non-native invasive species present, but not dominant, over a large portion of the expected strata <u>or</u> communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent <u>or</u> communities with non-native invasive species dominant over a large portion of expected strata <u>or</u> communities composed of planted stands of non-characteristic species <u>or</u> communities inappropriately composed of a single species <u>or</u> no vegetation.
25.	25a. 🗌 Yes 🛛 🛛	Issessment reach metric (skip for all Coastal Plain streams) No Was conductivity measurement recorded? t one of the following reasons. No Water Other:
	25b. Check the t □A < 46	box corresponding to the conductivity measurement (units of microsiemens per centimeter). B = B = 46 to < 67 = C = 67 to < 79 = D = 79 to < 230 = C = 230

Notes/Sketch:

Draft NC SAM Stream Rating Sheet Accompanies User Manual Version 2.1

Stream Site Name	Carpenter Bottom Mitigation Site	Date of Assessment	7/15/2019	
Stream Category	Pa1	Assessor Name/Organization	M. Caddell	
Notes of Field Asses		NO		
Presence of regulate	ory considerations (Y/N)		YES	
Additional stream inf	NO			
NC SAM feature typ	e (perennial, intermittent, Tidal N	Perennial		

Function Class Rating Summary	USACE/ All Streams	NCDWR Intermittent
(1) Hydrology	LOW	
(2) Baseflow	MEDIUM	
(2) Flood Flow	LOW	
(3) Streamside Area Attenuation	LOW	
(4) Floodplain Access	LOW	
(4) Wooded Riparian Buffer	MEDIUM	
(4) Microtopography	LOW	
(3) Stream Stability	MEDIUM	
(4) Channel Stability	LOW	
(4) Sediment Transport	HIGH	
(4) Stream Geomorphology	MEDIUM	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA	
(2) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Channel Stability	NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	LOW	
(2) Baseflow	MEDIUM	
(2) Streamside Area Vegetation	LOW	
(3) Upland Pollutant Filtration	LOW	
(3) Thermoregulation	MEDIUM	
(2) Indicators of Stressors	YES	
(2) Aquatic Life Tolerance	HIGH	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	LOW	
(2) In-stream Habitat	MEDIUM	
(3) Baseflow	MEDIUM	
(3) Substrate	HIGH	
(3) Stream Stability	LOW	
(3) In-stream Habitat	MEDIUM	
(2) Stream-side Habitat	LOW	
(3) Stream-side Habitat	LOW	
(3) Thermoregulation	MEDIUM	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction	NA	
(3) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Stream Stability (4) Tidal Marsh Channel Stability	NA	
(4) Tidal Marsh Stream Geomorphology	NA NA	
(3) Tidal Marsh In-stream Habitat	NA NA	
(2) Intertidal Zone	NA	
Overall	LOW	

NC SAM FIELD ASSESSMENT FORM

	Accompanies Us	ser Manual Version 2.1
USACE AID #:		NCDWR #:
INSTRUCTIONS: Attach a s	ketch of the assessment area and phot	tographs. Attach a copy of the USGS 7.5-minute topographic quadrangle,
and circle the location of the	stream reach under evaluation. If mul	Itiple stream reaches will be evaluated on the same property, identify and
number all reaches on the att	ached map, and include a separate for	m for each reach. See the NC SAM User Manual for detailed descriptions
		ketch" section if supplementary measurements were performed. See the
	amples of additional measurements that	
		ENT AREA (do not need to be within the assessment area).
PROJECT/SITE INFORMAT	-	
1. Project name (if any):	Carpenter Bottom Mitigation Site	2. Date of evaluation: 7/15/2019
3. Applicant/owner name:	Wildlands	4. Assessor name/organization: M. Caddell
5. County:	Gaston	6. Nearest named water body
7. River basin:	Catawba	on USGS 7.5-minute quad: Beaverdam Creek
•	degrees, at lower end of assessment re	
	lepth and width can be approximation	
9. Site number (show on attac	· · · · · · · · · · · · · · · · · · ·	10. Length of assessment reach evaluated (feet): 110
	in riffle, if present) to top of bank (feet)	
12. Channel width at top of ba		. Is assessment reach a swamp steam? □Yes □No
	al flow Intermittent flow Tidal Ma	ISIT Stream
15. NC SAM Zone:	Mountains (M)	nt (P) 🛛 Inner Coastal Plain (I) 🗌 Outer Coastal Plain (O)
TS. NO SAM ZONE.		
	¥	
16. Estimated geomorphic		
valley shape (skip for Tidal Marsh Stream):	(more sinuous stream, flatter valle	y slope) — (less sinuous stream, steeper valley slope)
	·	
17. Watershed size: (skip		0.1 to < 0.5 mi ²)
for Tidal Marsh Stream)		
ADDITIONAL INFORMATIO		s, check all that apply to the assessment area.
Section 10 water	Classified Trout Waters	X Water Supply Watershed (□I □II □II XIV □V)
Essential Fish Habitat	Primary Nursery Area	High Quality Waters/Outstanding Resource Waters
Publicly owned propert		
	□303(d) List	CAMA Area of Environmental Concern (AEC)
Documented presence		ed species within the assessment area.
List species:	•	
Designated Critical Ha	pitat (list species)	
19. Are additional stream info	rmation/supplementary measurements	s included in "Notes/Sketch" section or attached? □Yes ⊠No
	ment reach metric (skip for Size 1 s	treams and Tidal Marsh Streams)
	ut assessment reach.	
B No flow, water ir ⊠C No water in asse		
_		
	ction – assessment reach metric	
		or riffle-pool sequence is severely affected by a flow restriction <u>or</u> fill to the uatic macrophytes <u>or</u> ponded water <u>or</u> impoundment on flood or ebb within
		hed culverts, causeways that constrict the channel, tidal gates, debris jams

beaver dams).

3. Feature Pattern – assessment reach metric

- A majority of the assessment reach has altered pattern (examples: straightening, modification above or below culvert). Not A
- 4. Feature Longitudinal Profile assessment reach metric
 - A Majority of assessment reach has a substantially altered stream profile (examples: channel down-cutting, existing damming, over widening, active aggradation, dredging, and excavation where appropriate channel profile has not reformed from any of these disturbances).
 - B Not A

5. Signs of Active Instability – assessment reach metric

Consider only current instability, not past events from which the stream has currently recovered. Examples of instability include active bank failure, active channel down-cutting (head-cut), active widening, and artificial hardening (such as concrete, gabion, rip-rap).

A < 10% of channel unstable

B 10 to 25% of channel unstable

C > 25% of channel unstable

6. Streamside Area Interaction – streamside area metric Consider for the Left Bank (LB) and the Right Bank (RB).

Consi	der for	the	Left	Bank	(
LB	RB				

- Little or no evidence of conditions that adversely affect reference interaction Moderate evidence of conditions (examples: berms, levees, down-cutting, a
 - B Moderate evidence of conditions (examples: berms, levees, down-cutting, aggradation, dredging) that adversely affect reference interaction (examples: limited streamside area access, disruption of flood flows through streamside area, leaky or intermittent bulkheads, causeways with floodplain constriction, minor ditching [including mosquito ditching])
- C Extensive evidence of conditions that adversely affect reference interaction (little to no floodplain/intertidal zone access [examples: causeways with floodplain and channel constriction, bulkheads, retaining walls, fill, stream incision, disruption of flood flows through streamside area] <u>or</u> too much floodplain/intertidal zone access [examples: impoundments, intensive mosquito ditching]) <u>or</u> floodplain/intertidal zone unnaturally absent <u>or</u> assessment reach is a man-made feature on an interstream divide

7. Water Quality Stressors – assessment reach/intertidal zone metric

Check all that apply.

⊠A ⊡B

ПС

- Discolored water in stream or intertidal zone (milky white, blue, unnatural water discoloration, oil sheen, stream foam)
- B Excessive sedimentation (burying of stream features or intertidal zone)
- C Noticeable evidence of pollutant discharges entering the assessment reach and causing a water quality problem
- D Odor (not including natural sulfide odors)
- E Current published or collected data indicating degraded water quality in the assessment reach. Cite source in "Notes/Sketch" section.
- F Livestock with access to stream or intertidal zone
- G Excessive algae in stream or intertidal zone
- Degraded marsh vegetation in the intertidal zone (removal, burning, regular mowing, destruction, etc)
- Other: _____ (explain in "Notes/Sketch" section)
- J Little to no stressors

8. Recent Weather – watershed metric (skip for Tidal Marsh Streams)

- For Size 1 or 2 streams, D1 drought or higher is considered a drought; for Size 3 or 4 streams, D2 drought or higher is considered a drought.
- A Drought conditions and no rainfall or rainfall not exceeding 1 inch within the last 48 hours
- B Drought conditions and rainfall exceeding 1 inch within the last 48 hours
- C No drought conditions

9. Large or Dangerous Stream – assessment reach metric

Yes No Is stream is too large or dangerous to assess? If Yes, skip to Metric 13 (Streamside Area Ground Surface Condition).

10. Natural In-stream Habitat Types - assessment reach metric

10a. Yes Degraded in-stream habitat over majority of the assessment reach (examples of stressors include excessive sedimentation, mining, excavation, in-stream hardening [for example, rip-rap], recent dredging, and snagging) (evaluate for Size 4 Coastal Plain streams only, then skip to Metric 12)

10b. Check all that occur (occurs if > 5% coverage of assessment reach) (skip for Size 4 Coastal Plain streams)

- A Multiple aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)
- B Multiple sticks and/or leaf packs and/or emergent vegetation
- C Multiple snags and logs (including lap trees)
- D 5% undercut banks and/or root mats and/or roots
- in banks extend to the normal wetted perimeter
- E Little or no habitat

Check for Tidal Marsh Streams Only]F]G]H]J]K
--	----------------------------

5% oysters or other natural hard bottoms Submerged aquatic vegetation Low-tide refugia (pools) Sand bottom 5% vertical bank along the marsh Little or no habitat

11. Bedform and Substrate – assessment reach metric (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)

- 11a.
 Yes
 No Is assessment reach in a natural sand-bed stream? (skip for Coastal Plain streams)
- 11b. Bedform evaluated. Check the appropriate box(es).
 - A Riffle-run section (evaluate 11c)
 - B Pool-glide section (evaluate 11d)
 - C Natural bedform absent (skip to Metric 12, Aquatic Life)
- 11c. In riffle sections, check all that occur below the normal wetted perimeter of the assessment reach whether or not submerged. Check at least one box in each row (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams). Not Present (NP) = absent, Rare (R) = present but ≤ 10%, Common (C) = > 10-40%, Abundant (A) = > 40-70%, Predominant (P) = > 70%. Cumulative percentages should not exceed 100% for each assessment reach.
 NP
 R
 C
 A
 P

	,		Bedrock/saprolite Boulder (256 – 4096 mm) Cobble (64 – 256 mm) Gravel (2 – 64 mm) Sand (.062 – 2 mm) Silt/clay (< 0.062 mm) Detritus
			Artificial (rip-rap, concrete, etc.)

11d. Tyes No Are pools filled with sediment? (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)

12. Aquatic Life – assessment reach metric (skip for Tidal Marsh Streams)

- ⊠No Was an in-stream aquatic life assessment performed as described in the User Manual? 12a. 🗌 Yes If No, select one of the following reasons and skip to Metric 13. No Water Other:
- 12b. Yes ⊠No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
 - Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. >1

Adult frogs
Aquatic reptiles
Aquatic macrophy
Beetles
Caddisfly larvae (
Asian clam (Corbi
Crustacean (isopo
Damselfly and dra
Dipterans
Mayfly larvae (E)
Megaloptera (alde
Midges/mosquito

1

- Aquatic reptiles
 - Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)
- Beetles
- Caddisfly larvae (T)
- Asian clam (Corbicula)
- Crustacean (isopod/amphipod/crayfish/shrimp)
- Dipterans
- Mayfly larvae (E) Megaloptera (alderfly, fishfly, dobsonfly larvae)
- Midges/mosquito larvae
- Mosquito fish (*Gambusia*) or mud minnows (*Umbra pygmaea*)
- Mussels/Clams (not Corbicula)
 - Other fish Salamanders/tadpoles

 - Stonefly larvae (P)
 - Tipulid larvae
 - Worms/leeches

13. Streamside Area Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types)

Consider for the Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff. LB RB

ΠA	ΠA	Little or no alteration to water storage capacity over a majority of the streamside area
□В	□В	Moderate alteration to water storage capacity over a majority of the streamside area
⊠C	⊠C	Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction,
		livestock disturbance, buildings, man-made levees, drainage pipes)

14. Streamside Area Water Storage - streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Consider for the Left Bank (LB) and the Right Bank (RB) of the streamside area.

0	
В	RB
A	ΠA
∃В	□в

- Majority of streamside area with depressions able to pond water ≥ 6 inches deep
- В Majority of streamside area with depressions able to pond water 3 to 6 inches deep
- C Majority of streamside area with depressions able to pond water < 3 inches deep

15. Wetland Presence – streamside area metric (skip for Tidal Marsh Streams)

Consider for the Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the normal wetted perimeter of assessment reach. RB

- LB
 - ΠY Are wetlands present in the streamside area?
- ×Ν ΠN ΜN
- 16. Baseflow Contributors assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)

Check all contributors within the assessment reach or within view of and draining to the assessment reach.

- ΠA Streams and/or springs (jurisdictional discharges)
- ⊡в Ponds (include wet detention basins; do not include sediment basins or dry detention basins)
- □с Obstruction passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir)
- D Evidence of bank seepage or sweating (iron in water indicates seepage)
- ΞE Stream bed or bank soil reduced (dig through deposited sediment if present)
- □F None of the above

17. Baseflow Detractors – assessment area metric (skip for Tidal Marsh Streams)

Check all that apply.

Evidence of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation) ΠA

□в Obstruction not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) □с Urban stream (\geq 24% impervious surface for watershed)

- Evidence that the streamside area has been modified resulting in accelerated drainage into the assessment reach ΔD
- Assessment reach relocated to valley edge ΠE
- ΠF None of the above

18. Shading – assessment reach metric (skip for Tidal Marsh Streams)

- Consider aspect. Consider "leaf-on" condition.
- ΠA Stream shading is appropriate for stream category (may include gaps associated with natural processes)
- ⊠В Degraded (example: scattered trees)
- □С Stream shading is gone or largely absent

19.	Buffer Width - streamside area metric	(ski	n for	Tidal	Marsh	Streams
13.	Dunei Widun – Sueamside area metric	(SRI	pior	riuai	11101 311	oueams

Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out

	to the first break. Vegetated Wooded LB RB LB RB ⊠A △A △A △A □B □B □B □B □B □C □C □C □C □C □D □D □D □D □D □E □E ☑E ☑E ☑E	≥ 100 feet wide <u>or</u> extends to the edge of the watershed From 50 to < 100 feet wide From 30 to < 50 feet wide From 10 to < 30 feet wide < 10 feet wide <u>or</u> no trees
20.	Consider for left bank (LB RB A A Matur B B Non-n SC SC Herba	mside area metric (skip for Tidal Marsh Streams) LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width). e forest nature woody vegetation <u>or</u> modified vegetation structure iceous vegetation with or without a strip of trees < 10 feet wide ained shrubs
21.	E E Little of Buffer Stressors – strea Check all appropriate b within 30 feet of stream (*	or no vegetation amside area metric (skip for Tidal Marsh Streams) oxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is < 30 feet), or is between 30 to 50 feet of stream (30-50 feet). stressors occurs on oither bank check boro and skip to Motric 22:
	Abuts< 30 feet	stressors occurs on either bank, check here and skip to Metric 22: □ 30-50 feet □ LB RB □A □A RB □B B □B Maintained turf □C □C Pasture (no livestock)/commercial horticulture □D □D Pasture (active livestock use)
22.	Consider for left bank (side area metric (skip for Tidal Marsh Streams) LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width). Im to high stem density
	🖾 B 🖾 B Low s	tem density boded riparian buffer <u>or</u> predominantly herbaceous species <u>or</u> bare ground
23.	Consider whether vegeta LB RB ⊠A ⊠A The to □B □B The to	I Buffer – streamside area metric (skip for Tidal Marsh Streams) ted buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. otal length of buffer breaks is < 25 percent. otal length of buffer breaks is between 25 and 50 percent. otal length of buffer breaks is > 50 percent.
24.	Evaluate the dominant ve assessment reach habita LB RB	
	with n B B Veget specie	ation is close to undisturbed in species present and their proportions. Lower strata composed of native species, on-native invasive species absent or sparse. ation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native es. This may include communities of weedy native species that develop after clear-cutting or clearing or
	comm ⊠C ⊠C Veget with n	unities with non-native invasive species present, but not dominant, over a large portion of the expected strata <u>or</u> unities missing understory but retaining canopy trees. ation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent <u>or</u> communities on-native invasive species dominant over a large portion of expected strata <u>or</u> communities composed of planted s of non-characteristic species <u>or</u> communities inappropriately composed of a single species <u>or</u> no vegetation.
25.	25a. ∐Yes ⊠No V	nent reach metric (skip for all Coastal Plain streams) Vas conductivity measurement recorded? the following reasons. □No Water □Other:
		esponding to the conductivity measurement (units of microsiemens per centimeter). B 46 to < 67 \Box C 67 to < 79 \Box D 79 to < 230 \Box E ≥ 230

Notes/Sketch:

Draft NC SAM Stream Rating Sheet Accompanies User Manual Version 2.1

Stream Site Name Stream Category	Carpenter Bottom Mitigation Site Pa1	Date of Assessment Assessor Name/Organization	7/15/2019 M. Caddell	
Notes of Field Asses	NO			
Presence of regulato	YES			
Additional stream inf	NO			
NC SAM feature type	e (perennial, intermittent, Tidal I	Marsh Stream)	Intermittent	

Function Class Rating Summary	USACE/ All Streams	NCDWR Intermittent
(1) Hydrology	HIGH	HIGH
(2) Baseflow	MEDIUM	MEDIUM
(2) Flood Flow	HIGH	HIGH
(3) Streamside Area Attenuation	MEDIUM	MEDIUM
(4) Floodplain Access	HIGH	HIGH
(4) Wooded Riparian Buffer	LOW	LOW
(4) Microtopography	LOW	LOW
(3) Stream Stability	HIGH	HIGH
(4) Channel Stability	HIGH	HIGH
(4) Sediment Transport	LOW	LOW
(4) Stream Geomorphology	HIGH	HIGH
(2) Stream/Intertidal Zone Interaction	NA	NA
(2) Longitudinal Tidal Flow	NA	NA
(2) Tidal Marsh Stream Stability	NA	NA
(3) Tidal Marsh Channel Stability	NA	NA
(3) Tidal Marsh Stream Geomorphology	NA	NA
(1) Water Quality	LOW	LOW
(2) Baseflow	MEDIUM	MEDIUM
(2) Streamside Area Vegetation	LOW	LOW
(3) Upland Pollutant Filtration	LOW	LOW
(3) Thermoregulation	MEDIUM	MEDIUM
(2) Indicators of Stressors	YES	YES
(2) Aquatic Life Tolerance	OMITTED	NA
(2) Intertidal Zone Filtration	NA	NA
(1) Habitat	LOW	LOW
(2) In-stream Habitat	LOW	LOW
(3) Baseflow	MEDIUM	MEDIUM
(3) Substrate	LOW	LOW
(3) Stream Stability	HIGH	HIGH
(3) In-stream Habitat	LOW	LOW
(2) Stream-side Habitat	LOW	LOW
(3) Stream-side Habitat	LOW	LOW
(3) Thermoregulation	LOW	LOW
(2) Tidal Marsh In-stream Habitat	NA	NA
(3) Flow Restriction	NA	NA
(3) Tidal Marsh Stream Stability	NA	NA
(4) Tidal Marsh Channel Stability	NA	NA
(4) Tidal Marsh Stream Geomorphology	NA	NA
(3) Tidal Marsh In-stream Habitat	NA	NA
(2) Intertidal Zone	NA	NA
Overall	LOW	LOW

NC SAM FIELD ASSESSMENT FORM

Accompanies User Manual Version 2.1				
USACE AID #:	NCDWR #:			
INSTRUCTIONS: Attach a st	ketch of the assessment area and photographs. Attach a copy of the USGS 7.5-minute topographic quadrangle,			
and circle the location of the	stream reach under evaluation. If multiple stream reaches will be evaluated on the same property, identify and			
number all reaches on the atta	ached map, and include a separate form for each reach. See the NC SAM User Manual for detailed descriptions			
	d information. Record in the "Notes/Sketch" section if supplementary measurements were performed. See the			
NC SAM User Manual for exa	amples of additional measurements that may be relevant.			
NOTE EVIDENCE OF STRES	SSORS AFFECTING THE ASSESSMENT AREA (do not need to be within the assessment area).			
PROJECT/SITE INFORMATI	ON:			
1. Project name (if any):	Carpenter Bottom Mitigation Site 2. Date of evaluation: 7/15/2019			
3. Applicant/owner name:	Wildlands 4. Assessor name/organization: M. Caddell			
5. County:	Gaston 6. Nearest named water body			
7. River basin:	Catawba on USGS 7.5-minute quad: Beaverdam Creek			
-	legrees, at lower end of assessment reach): 35.40745, -81.25984			
	lepth and width can be approximations)			
9. Site number (show on attac				
	in riffle, if present) to top of bank (feet): 4 Unable to assess channel depth.			
12. Channel width at top of ba				
	al flow Intermittent flow ITidal Marsh Stream			
STREAM CATEGORY INFO				
15. NC SAM Zone:	🗌 Mountains (M) 🛛 Piedmont (P) 🗌 Inner Coastal Plain (I) 🗌 Outer Coastal Plain (O)			
16. Estimated geomorphic				
valley shape (skip for				
Tidal Marsh Stream):	(more sinuous stream, flatter valley slope) (less sinuous stream, steeper valley slope)			
17. Watershed size: (skip	⊠Size 1 (< 0.1 mi ²) □Size 2 (0.1 to < 0.5 mi ²) □Size 3 (0.5 to < 5 mi ²) □Size 4 (≥ 5 mi ²)			
for Tidal Marsh Stream)				
ADDITIONAL INFORMATION	N:			
18. Were regulatory considera	ations evaluated? Xes INo If Yes, check all that apply to the assessment area.			
Section 10 water	□Classified Trout Waters			
Essential Fish Habitat	Primary Nursery Area High Quality Waters/Outstanding Resource Waters			
Publicly owned propert				
Anadromous fish	□303(d) List □CAMA Area of Environmental Concern (AEC)			
	of a federal and/or state listed protected species within the assessment area.			
List species:				
Designated Critical Hat				
19. Are additional stream info	rmation/supplementary measurements included in "Notes/Sketch" section or attached? □Yes ⊠No			
1. Channel Water – assess	ment reach metric (skip for Size 1 streams and Tidal Marsh Streams)			
	it assessment reach.			
\square B No flow, water in				
$\square C$ No water in asse				
	ction – assessment reach metric assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction <u>or</u> fill to the			
	ing flow or a channel choked with aguatic macrophytes or ponded water or impoundment on flood or ebb within			

- - the assessment reach (examples: undersized or perched culverts, causeways that constrict the channel, tidal gates, debris jams, beaver dams). □в Not A

3. Feature Pattern – assessment reach metric

- ⊠Α A majority of the assessment reach has altered pattern (examples: straightening, modification above or below culvert). ΠВ Not A
- Feature Longitudinal Profile assessment reach metric 4.
 - ⊠Α Majority of assessment reach has a substantially altered stream profile (examples: channel down-cutting, existing damming, over widening, active aggradation, dredging, and excavation where appropriate channel profile has not reformed from any of these disturbances).
 - ⊡в Not A

Signs of Active Instability – assessment reach metric 5.

Consider only current instability, not past events from which the stream has currently recovered. Examples of instability include active bank failure, active channel down-cutting (head-cut), active widening, and artificial hardening (such as concrete, gabion, rip-rap).

< 10% of channel unstable

□в 10 to 25% of channel unstable

⊠C > 25% of channel unstable

Streamside Area Interaction - streamside area metric 6. Consider for the Left Bank (LB) and the Right Bank (RB).

RB LB

ΠA □в

⊠C

- □A □B Little or no evidence of conditions that adversely affect reference interaction
- Moderate evidence of conditions (examples: berms, levees, down-cutting, aggradation, dredging) that adversely affect reference interaction (examples: limited streamside area access, disruption of flood flows through streamside area, leaky or intermittent bulkheads, causeways with floodplain constriction, minor ditching [including mosquito ditching])
- ⊠C Extensive evidence of conditions that adversely affect reference interaction (little to no floodplain/intertidal zone access [examples: causeways with floodplain and channel constriction, bulkheads, retaining walls, fill, stream incision, disruption of flood flows through streamside area] or too much floodplain/intertidal zone access [examples: impoundments, intensive mosquito ditching]) or floodplain/intertidal zone unnaturally absent or assessment reach is a man-made feature on an interstream divide

Water Quality Stressors - assessment reach/intertidal zone metric 7.

Check all that apply.

- Discolored water in stream or intertidal zone (milky white, blue, unnatural water discoloration, oil sheen, stream foam) ΠA
- Excessive sedimentation (burying of stream features or intertidal zone) Πв
- Noticeable evidence of pollutant discharges entering the assessment reach and causing a water quality problem
- Odor (not including natural sulfide odors) DD
- Current published or collected data indicating degraded water quality in the assessment reach. Cite source in "Notes/Sketch" DE section.
- ⊠F Livestock with access to stream or intertidal zone
- ŪG Excessive algae in stream or intertidal zone
- Πн Degraded marsh vegetation in the intertidal zone (removal, burning, regular mowing, destruction, etc)
- Other: (explain in "Notes/Sketch" section)
- ΠJ Little to no stressors

Recent Weather - watershed metric (skip for Tidal Marsh Streams) 8.

- For Size 1 or 2 streams, D1 drought or higher is considered a drought; for Size 3 or 4 streams, D2 drought or higher is considered a drought.
- Drought conditions and no rainfall or rainfall not exceeding 1 inch within the last 48 hours ΠA
- ΠВ Drought conditions and rainfall exceeding 1 inch within the last 48 hours
- ⊠c No drought conditions

Large or Dangerous Stream – assessment reach metric 9.

Yes ⊠No Is stream is too large or dangerous to assess? If Yes, skip to Metric 13 (Streamside Area Ground Surface Condition).

10. Natural In-stream Habitat Types - assessment reach metric

10a. 🛛 Yes 🗌 No Degraded in-stream habitat over majority of the assessment reach (examples of stressors include excessive sedimentation, mining, excavation, in-stream hardening [for example, rip-rap], recent dredging, and snagging) (evaluate for Size 4 Coastal Plain streams only, then skip to Metric 12)

10b. Check all that occur (occurs if > 5% coverage of assessment reach) (skip for Size 4 Coastal Plain streams)

- Multiple aguatic macrophytes and aguatic mosses ΠA
- (include liverworts, lichens, and algal mats) ⊠в Multiple sticks and/or leaf packs and/or emergent vegetation
- ⊠C Multiple snags and logs (including lap trees)
- ΠD 5% undercut banks and/or root mats and/or roots
- in banks extend to the normal wetted perimeter
- E Little or no habitat

Check for Tidal Marsh Streams Only]F]G]H]J K
--	---------------------------

5% oysters or other natural hard bottoms Submerged aquatic vegetation Low-tide refugia (pools) Sand bottom 5% vertical bank along the marsh Little or no habitat

11. Bedform and Substrate – assessment reach metric (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)

- 11a. 🛛 Yes No Is assessment reach in a natural sand-bed stream? (skip for Coastal Plain streams)
- 11b. Bedform evaluated. Check the appropriate box(es).
 - ⊠Α Riffle-run section (evaluate 11c)
 - ⊠В Pool-glide section (evaluate 11d)
 - ПС Natural bedform absent (skip to Metric 12, Aquatic Life)
- 11c. In riffle sections, check all that occur below the normal wetted perimeter of the assessment reach whether or not submerged. Check at least one box in each row (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams). Not Present (NP) = absent, Rare (R) = present but < 10%, Common (C) = > 10-40%, Abundant (A) = > 40-70%, Predominant (P) = > 70%. Cumulative percentages should not exceed 100% for each assessment reach. ND р C ۸

Image: Stand (.002 - 2 mm) Im						Detritus
---	--	--	--	--	--	----------

11d. Yes No Are pools filled with sediment? (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)

12. Aquatic Life – assessment reach metric (skip for Tidal Marsh Streams)

- 12a. ⊠Yes □No Was an in-stream aquatic life assessment performed as described in the User Manual? If No, select one of the following reasons and skip to Metric 13. No Water Other:
- 12b. Xes □No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
 - Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. >1
 - Adult frogs

1

- Aquatic reptiles
- Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)
- Beetles
- Caddisfly larvae (T)
- Asian clam (Corbicula)
- Crustacean (isopod/amphipod/crayfish/shrimp)
- - Dipterans Mayfly larvae (E)
 - Megaloptera (alderfly, fishfly, dobsonfly larvae)
 - Midges/mosquito larvae
 - Mosquito fish (Gambusia) or mud minnows (Umbra pygmaea)
- Mussels/Clams (not Corbicula)
 - Other fish Salamanders/tadpoles

 - Stonefly larvae (P)
 - Tipulid larvae
 - Worms/leeches

13. Streamside Area Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types)

- Consider for the Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff. LB RB
 - ΠA ΠA Little or no alteration to water storage capacity over a majority of the streamside area Πв ΠВ Moderate alteration to water storage capacity over a majority of the streamside area ⊠c ⊠C Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction, livestock disturbance, buildings, man-made levees, drainage pipes)

14. Streamside Area Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Consider for the Left Bank (LB) and the Right Bank (RB) of the streamside area.

LB RB ΠA ΠA ⊡в ⊡в ⊠c

- Majority of streamside area with depressions able to pond water ≥ 6 inches deep
- Majority of streamside area with depressions able to pond water 3 to 6 inches deep
- ⊠C Majority of streamside area with depressions able to pond water < 3 inches deep

15. Wetland Presence – streamside area metric (skip for Tidal Marsh Streams)

Consider for the Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the normal wetted perimeter of assessment reach. RB

- LB ΠY
 - ΠY Are wetlands present in the streamside area?
- ΜN ΜN

16. Baseflow Contributors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)

Check all contributors within the assessment reach or within view of and draining to the assessment reach.

- ΠA Streams and/or springs (jurisdictional discharges)
- ⊡в Ponds (include wet detention basins; do not include sediment basins or dry detention basins)
- □с Obstruction passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir)
- ΔD Evidence of bank seepage or sweating (iron in water indicates seepage)
- ⊠Ε Stream bed or bank soil reduced (dig through deposited sediment if present)
- □F None of the above

17. Baseflow Detractors – assessment area metric (skip for Tidal Marsh Streams)

Check all that apply.

- Evidence of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation) ΠA
- □в Obstruction not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) □с Urban stream (\geq 24% impervious surface for watershed)
- Evidence that the streamside area has been modified resulting in accelerated drainage into the assessment reach ΔD
- Assessment reach relocated to valley edge ΠE
- ΠF None of the above

18. Shading – assessment reach metric (skip for Tidal Marsh Streams)

- Consider aspect. Consider "leaf-on" condition.
- ΠA Stream shading is appropriate for stream category (may include gaps associated with natural processes)
- ⊠В Degraded (example: scattered trees)
- □С Stream shading is gone or largely absent

Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out

		RB $\square A$ \geq 100 feet wide or extends to the edge of the watershed $\square B$ From 50 to < 100 feet wide $\square C$ From 30 to < 50 feet wide $\square D$ From 10 to < 30 feet wide
20.	Consider for left ILBRB $\Box A$ $\Box A$ $\Box B$ $\Box B$ $\Box C$ $\Box C$ $\Box D$ $\Box D$	- streamside area metric (skip for Tidal Marsh Streams) bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width). Mature forest Non-mature woody vegetation <u>or</u> modified vegetation structure Herbaceous vegetation with or without a strip of trees < 10 feet wide Maintained shrubs
21.	Buffer Stressors -Check all appropriationwithin 30 feet of strIf none of the followAbuts< 30LBRBLBAAABBBCCC	Little or no vegetation - streamside area metric (skip for Tidal Marsh Streams) riate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is ream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). owing stressors occurs on either bank, check here and skip to Metric 22: feet 30-50 feet RB LB RB A A A A Row crops B B B Maintained turf C C C Pasture (no livestock)/commercial horticulture ØD ØD ØD Pasture (active livestock use)
22.	Consider for left l LB RB □A □A ⊠B ⊠B	reamside area metric (skip for Tidal Marsh Streams) pank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width). Medium to high stem density Low stem density No wooded riparian buffer <u>or</u> predominantly herbaceous species <u>or</u> bare ground
23.	Consider whether LB RB ⊠A ⊠A	etated Buffer – streamside area metric (skip for Tidal Marsh Streams) vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. The total length of buffer breaks is < 25 percent. The total length of buffer breaks is between 25 and 50 percent. The total length of buffer breaks is > 50 percent.
24.	Evaluate the domin assessment reach LB RB	bant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to habitat. Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse. Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or
	⊠c ⊠c	communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent <u>or</u> communities with non-native invasive species dominant over a large portion of expected strata <u>or</u> communities composed of planted stands of non-characteristic species <u>or</u> communities inappropriately composed of a single species <u>or</u> no vegetation.
25.	25a. ∐Yes ⊠I	sessment reach metric (skip for all Coastal Plain streams) No Was conductivity measurement recorded? one of the following reasons.
	25b. Check the bo □A < 46	ox corresponding to the conductivity measurement (units of microsiemens per centimeter). $\square B$ 46 to < 67 $\square C$ 67 to < 79 $\square D$ 79 to < 230 $\square E$ ≥ 230

Notes/Sketch:

Draft NC SAM Stream Rating Sheet Accompanies User Manual Version 2.1

Stream Site Name	Carpenter Bottom Mitigation Site	Date of Assessment	7/15/2019
Stream Category	Pa1	Assessor Name/Organization	M. Caddell
Notes of Field Asses	ssment Form (Y/N)		NO
	ssment Form (Y/N) bry considerations (Y/N)		NO YES
Presence of regulate		urements included (Y/N)	-

Function Class Rating Summary	USACE/ All Streams	NCDWR Intermittent
(1) Hydrology	LOW	
(2) Baseflow	MEDIUM	
(2) Flood Flow	LOW	
(3) Streamside Area Attenuation	LOW	
(4) Floodplain Access	LOW	
(4) Wooded Riparian Buffer	MEDIUM	
(4) Microtopography	LOW	
(3) Stream Stability	LOW	
(4) Channel Stability	LOW	
(4) Sediment Transport	HIGH	
(4) Stream Geomorphology	LOW	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA	
(2) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Channel Stability	NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	LOW	
(2) Baseflow	MEDIUM	
(2) Streamside Area Vegetation	LOW	
(3) Upland Pollutant Filtration	LOW	
(3) Thermoregulation	MEDIUM	
(2) Indicators of Stressors	YES	
(2) Aquatic Life Tolerance	MEDIUM	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	MEDIUM	
(2) In-stream Habitat	MEDIUM	
(3) Baseflow	MEDIUM	
(3) Substrate	HIGH	
(3) Stream Stability	LOW	
(3) In-stream Habitat	MEDIUM	
(2) Stream-side Habitat	MEDIUM	
(3) Stream-side Habitat	MEDIUM	
(3) Thermoregulation	MEDIUM	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction	NA	
(3) Tidal Marsh Stream Stability	NA	
(4) Tidal Marsh Channel Stability	NA	
(4) Tidal Marsh Stream Geomorphology	NA	
(3) Tidal Marsh In-stream Habitat	NA	
(2) Intertidal Zone	NA	
Overall	LOW	

APPENDIX 5 Categorical Exclusion Documentation and Agency Correspondence

Categorical Exclusion Form for Ecosystem Enhancement Program Projects Version 2

Note: Only Appendix A should to be submitted (along with any supporting documentation) as the environmental document.

Par	1: General Project Information
Project Name:	Carpenter Bottom Mitigation Site
County Name:	Gaston County
DMS Number:	100090
Project Sponsor:	Wildlands Engineering, Inc.
Project Contact Name:	Andrea Eckardt
Project Contact Address:	1430 S. Mint Street, Suite 104, Charlotte, NC 28203
Project Contact E-mail:	aeckardt@wildlandseng.com
DMS Project Manager:	Matthew Reid
and the second	Project Description s located in Gaston County, NC approximately 4.1 miles south of the City of
along with the restoration and preserv mitigation areas are currently active ca	a County/Lincoln County border. The project includes wetland restoration ation of Carpenter's Branch and several unnamed tributaries. Proposed ttle and hay pasture with limited forested canopy. The project will provide vetland credits to the Division of Mitigation Services in the Catawba River ea).
	For Official Use Only
Gliz Zoig Date Conditional Approved By:	Million DMS Project Manager
Date	For Division Administrator FHWA outstanding issues
Final Approval By:	
Donald W. Brew	6-12-19
Date	For Division Administrator FHWA

Part 2: All Projects	
Regulation/Question	Response
Coastal Zone Management Act (CZMA)	
1. Is the project located in a CAMA county?	Yes
2. Does the project involve ground-disturbing activities within a CAMA Area of	☐ Yes
Environmental Concern (AEC)?	
3. Has a CAMA permit been secured?	□ N/A □ Yes
5. Has a CAMA permit been secured?	
4. Has NCDCM agreed that the project is consistent with the NC Coastal Management	
Program?	
	□ N/A
Comprehensive Environmental Response, Compensation and Liability Act (C	ERCLA)
1. Is this a "full-delivery" project?	🗌 Yes
	🗌 No
2. Has the zoning/land use of the subject property and adjacent properties ever been	🗌 Yes
designated as commercial or industrial?	🗌 No
	□ N/A
3. As a result of a limited Phase I Site Assessment, are there known or potential	
hazardous waste sites within or adjacent to the project area?	
4. As a result of a Phase I Site Assessment, are there known or potential hazardous	□ N/A □ Yes
waste sites within or adjacent to the project area?	
5. As a result of a Phase II Site Assessment, are there known or potential hazardous	
waste sites within the project area?	
	🗍 N/A
6. Is there an approved hazardous mitigation plan?	🗌 Yes
	🗌 No
	□ N/A
National Historic Preservation Act (Section 106)	
1. Are there properties listed on, or eligible for listing on, the National Register of	
Historic Places in the project area?	No No
2. Does the project affect such properties and does the SHPO/THPO concur?	
	□ No □ N/A
3. If the effects are adverse, have they been resolved?	
Uniform Relocation Assistance and Real Property Acquisition Policies Act (Un	
1. Is this a "full-delivery" project?	Yes
	🗌 No
2. Does the project require the acquisition of real estate?	🗌 Yes
	🗌 No
	□ N/A
3. Was the property acquisition completed prior to the intent to use federal funds?	☐ Yes
4. Has the owner of the property been informed:	
* prior to making an offer that the agency does not have condemnation authority; and * what the fair market value is believed to be?	□ No □ N/A

Part 3: Ground-Disturbing Activities Regulation/Question	Response	
American Indian Religious Freedom Act (AIRFA) 1. Is the project located in a county claimed as "territory" by the Eastern Band of Cherokee Indians?	│	
2. Is the site of religious importance to American Indians?		
3. Is the project listed on, or eligible for listing on, the National Register of Historic		
Places?	□ No □ N/A	
4. Have the effects of the project on this site been considered?	☐ Yes ☐ No	
Antiguities Act (AA)		
1. Is the project located on Federal lands?	☐ Yes ☐ No	
2. Will there be loss or destruction of historic or prehistoric ruins, monuments or objects		
of antiquity?	│ No │ N/A	
3. Will a permit from the appropriate Federal agency be required?	☐ Yes	
4. Has a permit been obtained?	│ N/A │ Yes	
	□ N/A	
Archaeological Resources Protection Act (ARPA)		
1. Is the project located on federal or Indian lands (reservation)?	☐ Yes ☐ No	
2. Will there be a loss or destruction of archaeological resources?	│	
	□ N/A	
3. Will a permit from the appropriate Federal agency be required?	Yes	
	│ No │ N/A	
4. Has a permit been obtained?		
	│	
Endangered Species Act (ESA)		
1. Are federal Threatened and Endangered species and/or Designated Critical Habitat	Yes	
listed for the county?	No No	
2. Is Designated Critical Habitat or suitable habitat present for listed species?	☐ Yes ☐ No	
	□ N/A	
3. Are T&E species present or is the project being conducted in Designated Critical		
Habitat?	□ No □ N/A	
4. Is the project "likely to adversely affect" the species and/or "likely to adversely modify"		
Designated Critical Habitat?	│	
5. Does the USFWS/NOAA-Fisheries concur in the effects determination?		
6. Has the USFWS/NOAA-Fisheries rendered a "jeopardy" determination?	│ N/A │ Yes	
0. Thas the OSEWSHNOAA-FISHENES TENDERED a Jeopardy determination?		

Executive Order 13007 (Indian Sacred Sites)	
1. Is the project located on Federal lands that are within a county claimed as "territory" by the EBCI?	☐ Yes ☐ No
2. Has the EBCI indicated that Indian sacred sites may be impacted by the proposed project?	☐ Yes ☐ No ☐ N/A
3. Have accommodations been made for access to and ceremonial use of Indian sacred sites?	☐ Yes ☐ No ☐ N/A
Farmland Protection Policy Act (FPPA)	
1. Will real estate be acquired?	☐ Yes ☐ No
2. Has NRCS determined that the project contains prime, unique, statewide or locally important farmland?	☐ Yes ☐ No ☐ N/A
3. Has the completed Form AD-1006 been submitted to NRCS?	☐ Yes ☐ No ☐ N/A
Fish and Wildlife Coordination Act (FWCA)	
1. Will the project impound, divert, channel deepen, or otherwise control/modify any water body?	☐ Yes ☐ No
2. Have the USFWS and the NCWRC been consulted?	☐ Yes ☐ No ☐ N/A
Land and Water Conservation Fund Act (Section 6(f))	
1. Will the project require the conversion of such property to a use other than public, outdoor recreation?	☐ Yes □ No
2. Has the NPS approved of the conversion?	Yes
	□ N/A
Magnuson-Stevens Fishery Conservation and Management Act (Essential Fishery Conservation and Fishery Conservat	
1. Is the project located in an estuarine system?	└ Yes └ No
2. Is suitable habitat present for EFH-protected species?	☐ Yes ☐ No ☐ N/A
3. Is sufficient design information available to make a determination of the effect of the project on EFH?	☐ Yes ☐ No ☐ N/A
4. Will the project adversely affect EFH?	☐ Yes ☐ No ☐ N/A
5. Has consultation with NOAA-Fisheries occurred?	☐ Yes ☐ No ☐ N/A
Migratory Bird Treaty Act (MBTA)	
1. Does the USFWS have any recommendations with the project relative to the MBTA?	☐ Yes ☐ No
2. Have the USFWS recommendations been incorporated?	☐ Yes ☐ No ☐ N/A
Wilderness Act	
1. Is the project in a Wilderness area?	☐ Yes
2. Has a special use permit and/or easement been obtained from the maintaining	
federal agency?	

GW329 DBP CHEROKEE NATION® P.O. Box 948 • Tahlequah, OK 74465-0948 • 918-453-5000 • cherokee.org Office of the Chief

Bill John Baker Principal Chief OP Gh JSS&oJ OEOGA

S. Joe Crittenden Deputy Principal Chief ወ. KG. JEYወy WPA DLሪብ ውEOGብ

January 29, 2019

Kimberly Browning United States Army Corps of Engineers 3331 Heritage Trade Drive, Suite 105 Wake Forest, NC 27587

Re: SAW-2018-02062, Carpenter Bottom Site

Ms. Kimberly Browning:

The Cherokee Nation (Nation) is in receipt of your correspondence about **SAW-2018-02062**, **Carpenter Bottom Site**, and appreciates the opportunity to provide comment upon this project. Please allow this letter to serve as the Nation's interest in acting as a consulting party to this proposed project.

The Nation maintains databases and records of cultural, historic, and pre-historic resources in this area. Our Historic Preservation Office reviewed this project, cross referenced the project's legal description against our information, and found no instances where this project intersects or adjoins such resources. Thus, the Nation does not foresee this project imparting impacts to Cherokee cultural resources at this time.

However, the Nation requests that the United States Army Corps of Engineers (USACE) halt all project activities immediately and re-contact our Offices for further consultation if items of cultural significance are discovered during the course of this project.

Additionally, the Nation requests that USACE conduct appropriate inquiries with other pertinent Historic Preservation Offices regarding historic and prehistoric resources not included in the Nation's databases or records.

If you require additional information or have any questions, please contact me at your convenience. Thank you for your time and attention to this matter.

Wado,

Elizabeth Toombs, Tribal Historic Preservation Officer Cherokee Nation Tribal Historic Preservation Office elizabeth-toombs@cherokee.org 918.453.5389

ROY COOPER Governor MICHAEL S. REGAN Secretary TIM BAUMGARTNER Director

5/1/2019

Stephen Yerka & Russell Townsend Historic Preservation Specialists Tribal Historic Preservation Office Eastern Band of the Cherokee Indians (828) 359-6852 syerka@nc-cherokee.com russtown@nc-cherokee.com

Dear Mr. Yerka and Mr. Townsend,

The North Carolina Department of Environmental Quality (NCDEQ) – Division of Mitigation Services (DMS) requests review and comment on any possible issues that might emerge with respect to archaeological or cultural resources associated with the proposed Carpenter Bottom mitigation site. The Federal Highway Administration (FHWA) is the lead federal agency for this proposed mitigation project.

The U.S. Army Corps of Engineers (USACE) issued a public notice (SAW-2018-02062) on 1/11/19 for this stream and wetland mitigation project. The USACE public notice closed on 2/27/19 and no response was received from the Eastern Band of the Cherokee Indians. Responses from the Cherokee Nation and NC SHPO are included for your review.

A USGS Topographic Map and a proposed project conceptual map showing the project area are enclosed. The topographic figure was prepared from the Lincolnton West, 7.5-Minute USGS Topographic Quadrangle. The project location (Latitude and Longitude) is as follows: 35°24'31"N,81°15'35"W.

The Carpenter Bottom Mitigation Site (Site) is located in Gaston County, NC approximately 4.1 miles south of the City of Lincolnton and just south of the Gaston County/Lincoln County border.

The site is being affected by heavy sedimentation, channelization, and nutrient loading. Poorly managed agricultural activities and alterations to stream channels, including loss of riparian vegetation are cited as contributing to sedimentation and habitat degradation via bank erosion. The site is currently accessible to cattle, but they will be excluded with the start of the project. It is planned to place approximately 15.2 acres under a permanent conservation easement. The project will yield 3,229 SMUs from restoration and preservation, and 8.2

North Carolina Department of Environmental Quality | Division of Mitigation Services 217 W. Jones Street | 1652 Mail Service Center | Raleigh, North Carolina 27699-1652 919.707.8976 WMUs, which consist of 6.8 acres of wetland re-establishment, and 2.1 acres of wetland rehabilitation.

We ask that you review this site based on the attached information to determine the presence of any known historic properties. We respectfully request a response within 30 days of receipt of this email in an effort to implement this necessary stream restoration/ mitigation project. Please feel free to contact us with any questions that you may have concerning this project.

Respectfully,

Paul Wiesner

Paul Wiesner Western Regional Supervisor North Carolina Department of Environmental Quality Division of Mitigation Services

828-273-1673 Mobile paul.wiesner@ncdenr.gov

Western DMS Field Office 5 Ravenscroft Drive Suite 102 Asheville, N.C. 28801

<u>Attachments:</u> Figure 1: USGS Topographic Map Figure 2: Proposed Project Conceptual Map Cherokee Nation Response to USACE Public Notice (SAW-2018-02062) NC SHPO Response to USACE Public Notice (SAW-2018-02062)

cc: Donnie Brew, FHWA

North Carolina Department of Environmental Quality | Division of Mitigation Services 217 W. Jones Street | 1652 Mail Service Center | Raleigh, North Carolina 27699-1652 919.707.8976

ROY COOPER Governor MICHAEL S. REGAN Secretary TIM BAUMGARTNER Director

> Erin Thompson & Sheila Bird Tribal Historic Preservation Office United Keetoowah Band of Cherokee 18263 W. Keetoowah Circle Tahlequah, OK 74464 918-871-2838 / 918-871-2852 ethompson@ukb-nsn.gov / sbird@ukb-nsn.gov

Dear Ms. Thompson and Ms. Bird,

The North Carolina Department of Environmental Quality (NCDEQ) – Division of Mitigation Services (DMS) requests review and comment on any possible issues that might emerge with respect to archaeological or cultural resources associated with the proposed Carpenter Bottom mitigation site. The Federal Highway Administration (FHWA) is the lead federal agency for this proposed mitigation project.

The U.S. Army Corps of Engineers (USACE) issued a public notice (SAW-2018-02062) on 1/11/19 for this stream and wetland mitigation project. The USACE public notice closed on 2/27/19 and no response was received from the United Keetoowah Band of Cherokee. Responses from the Cherokee Nation and NC SHPO are included for your review.

A USGS Topographic Map and a proposed project conceptual map showing the project area are enclosed. The topographic figure was prepared from the Lincolnton West, 7.5-Minute USGS Topographic Quadrangle. The project location (Latitude and Longitude) is as follows: 35°24'31"N,81°15'35"W.

The Carpenter Bottom Mitigation Site (Site) is located in Gaston County, NC approximately 4.1 miles south of the City of Lincolnton and just south of the Gaston County/Lincoln County border.

The site is being affected by heavy sedimentation, channelization, and nutrient loading. Poorly managed agricultural activities and alterations to stream channels, including loss of riparian vegetation are cited as contributing to sedimentation and habitat degradation via bank erosion. The site is currently accessible to cattle, but they will be excluded with the start of the project. It is planned to place approximately 15.2 acres under a permanent conservation easement. The project will yield 3,229 SMUs from restoration and preservation, and 8.2 WMUs, which consist of 6.8 acres of wetland re-establishment, and 2.1 acres of wetland rehabilitation.

North Carolina Department of Environmental Quality | Division of Mitigation Services 217 W. Jones Street | 1652 Mail Service Center | Raleigh, North Carolina 27699-1652 919.707.8976 5/1/2019

We ask that you review this site based on the attached information to determine the presence of any known historic properties. We respectfully request a response within 30 days of receipt of this letter in an effort to implement this necessary stream restoration/ mitigation project. Please feel free to contact us with any questions that you may have concerning this project.

Respectfully,

Paul Wiesner

Paul Wiesner Western Regional Supervisor North Carolina Department of Environmental Quality Division of Mitigation Services

828-273-1673 Mobile paul.wiesner@ncdenr.gov

Western DMS Field Office 5 Ravenscroft Drive Suite 102 Asheville, N.C. 28801

<u>Attachments:</u> Figure 1: USGS Topographic Map Figure 2: Proposed Project Conceptual Map Cherokee Nation Response to USACE Public Notice (SAW-2018-02062) NC SHPO Response to USACE Public Notice (SAW-2018-02062)

cc: Donnie Brew, FHWA

April 29, 2019

Claire Ellwanger US Fish and Wildlife Service Asheville Field Office 160 Zillicoa Street Asheville, NC 28801

Subject:Carpenter Bottom Mitigation SiteGaston County, North Carolina

Dear Ms. Ellwanger,

Wildlands Engineering, Inc. requests review and comment on any possible issues that might emerge with respect to endangered species, migratory birds, or other trust resources associated with the proposed Carpenter Bottom Mitigation Site, a stream and wetland mitigation site located in Gaston County, NC. A USGS Topographic Map and a Project Conceptual Map showing the approximate project area are enclosed. The topographic figure was prepared from the Lincolnton West, 7.5-Minute USGS Topographic Quadrangle and the site is located at latitude 35.4089600, longitude -81.2604790.

The Carpenter Bottom Mitigation Site is being developed to provide in-kind mitigation for unavoidable stream channel and riparian wetland impacts. This project will include wetland restoration along with stream restoration and preservation of Carpenter's Branch and its unnamed tributaries, which all flow to Beaverdam Creek. Several sections of channel have been identified as significantly degraded. The site has been disturbed due to agricultural use, including cattle that have full access to the stream.

According to your website (https://www.fws.gov/raleigh/species/cntylist/gaston.html) the threatened or endangered species for Gaston County are the Northern long-eared bat (*Myotis septentrionalis*), the bog turtle (*Glyptemys muhlenbergii*) the Dwarf-flowered heartleaf (*Hexastylis naniflora*), and the Schweinitz's Sunflower (*Helianthus schweinitzii*). If we have not heard from you in 30 days, we will assume that you do not have any comments regarding associated laws and that you do not have any information relevant to this project at the current time.

We thank you in advance for your timely response and cooperation. Please feel free to contact us with any questions that you may have concerning this project.

Sincerely, Indrea S. Eckardt

Andrea Eckardt Senior Environmental Scientist

<u>Attachment</u>: Figure 1 USGS Topographic Map

Figure 2 Project Conceptual Map

Andrea Eckardt

From:	Brew, Donnie (FHWA) <donnie.brew@dot.gov></donnie.brew@dot.gov>
Sent:	Wednesday, May 29, 2019 9:02 AM
То:	Ellwanger, Claire
Cc:	Wiesner, Paul; Andrea Eckardt; matthew.reid@ncdenr.gov
Subject:	NLEB 4(d) rule consultation - Carpenter Bottom mitigation site, Gaston County
Attachments:	Carpenter Bottom site- NLEB Consultation Form_5-29-19.docx; Figure 1 Carpenter Bottom site USGS map.pdf; Figure 2 Carpenter Bottom site map.pdf

Good morning Claire,

The purpose of this message is to notify your office that FHWA will use the streamlined consultation framework for the Carpenter Bottom Mitigation Site in Gaston County, NC.

Attached is a completed NLEB 4(d) Rule Streamlined Consultation form along with site maps/figures.

Thank you,

Donnie

Notifying the Service Under the Framework

Northern Long-Eared Bat 4(d) Rule Streamlined Consultation Form

Federal agencies (or designated non-federal representatives) should use the Northern Long-Eared Bat 4(d) Rule Streamlined Consultation form to notify the Service of their project and meet the requirements of the framework.

Northern Long-Eared Bat 4(d) Rule Streamlined Consultation Form (Word document)

Information requested in the Northern Long-Eared Bat 4(d) Rule Streamlined Consultation Form serves to

(1) notify the field office that an action agency will use the streamlined framework;

(2) describe the project with sufficient detail to support the required determination; and

(3) enable the USFWS to track effects and determine if reinitiation of consultation for the 4(d) rule is required. This form requests the minimum amount of information required for the Service to be able to track this information.

Providing information in the Streamlined Consultation Form does not address section 7(a)(2) compliance for any other listed species.

Donnie Brew Preconstruction & Environment Engineer Federal Highway Administration

310 New Bern Ave, Suite 410 Raleigh, NC 27601 donnie.brew@dot.gov 919-747-7017

Please consider the environment before printing this email.

Northern Long-Eared Bat 4(d) Rule Streamlined Consultation Form

Federal agencies should use this form for the optional streamlined consultation framework for the northern longeared bat (NLEB). This framework allows federal agencies to rely upon the U.S. Fish and Wildlife Service's (USFWS) January 5, 2016, intra-Service Programmatic Biological Opinion (BO) on the final 4(d) rule for the NLEB for section 7(a)(2) compliance by: (1) notifying the USFWS that an action agency will use the streamlined framework; (2) describing the project with sufficient detail to support the required determination; and (3) enabling the USFWS to track effects and determine if reinitiation of consultation is required per 50 CFR 402.16.

This form is not necessary if an agency determines that a proposed action will have no effect to the NLEB or if the USFWS has concurred in writing with an agency's determination that a proposed action may affect, but is not likely to adversely affect the NLEB (i.e., the standard informal consultation process). Actions that may cause prohibited incidental take require separate formal consultation. Providing this information does not address section 7(a)(2) compliance for any other listed species.

Info	rmation to Determine 4(d) Rule Compliance:	YES	NO
	Does the project occur wholly outside of the WNS Zone ¹ ?		\boxtimes
2.	Have you contacted the appropriate agency ² to determine if your project is near known hibernacula or maternity roost trees?		
3.	Could the project disturb hibernating NLEBs in a known hibernaculum?		\boxtimes
4.	Could the project alter the entrance or interior environment of a known hibernaculum?		\boxtimes
	Does the project remove any trees within 0.25 miles of a known hibernaculum at any time of year?		\boxtimes
6.	Would the project cut or destroy known occupied maternity roost trees, or any other trees within a 150-foot radius from the maternity roost tree from June 1 through July 31.		\boxtimes

You are eligible to use this form if you have answered yes to question #1 <u>or</u> yes to question #2 <u>and</u> no to questions 3, 4, 5 and 6. The remainder of the form will be used by the USFWS to track our assumptions in the BO.

Agency and Applicant³ (Name, Email, Phone No.): FHWA, Donnie Brew, <u>Donnie.brew@dot.gov</u>, 919-747-7017

Project Name: Carpenter Bottom Mitigation Site

Project Location (include coordinates if known): 35.4089600"N 80.2604790"W

Basic Project Description (provide narrative below or attach additional information):

The Carpenter Bottom Mitigation Site is a stream and wetland mitigation project located in Gaston County, approximately 4.1 miles south of the City of Lincolnton and just south of the Gaston County/Lincoln County border. The project will include the restoration and enhancement of Carpenter's Branch and several unnamed tributaries. Proposed mitigation areas are currently active cattle and hay pasture with limited forested canopy. The project will provide 3,229 stream mitigation units and 8.2 riparian wetland mitigation units to the Division of Mitigation Services in the Catawba River Basin (03050103 expanded service area). Construction of the stream restoration project will include some tree removal (>3"DBH) – approximately 2.5 acres.

¹ http://www.fws.gov/midwest/endangered/mammals/nleb/pdf/WNSZone.pdf

² See http://www.fws.gov/midwest/endangered/mammals/nleb/nhisites.html

³ If applicable - only needed for federal actions with applicants (e.g., for a permit, etc.) who are party to the consultation.

General Project Information	YES	NO
Does the project occur within 0.25 miles of a known hibernaculum? (47 miles)		\boxtimes
Does the project occur within 150 feet of a known maternity roost tree?		\boxtimes
Does the project include forest conversion ⁴ ? (if yes, report acreage below)	\boxtimes	
Estimated total acres of forest conversion	2.5	ac
If known, estimated acres ⁵ of forest conversion from April 1 to October 31		
If known, estimated acres of forest conversion from June 1 to July 31 ⁶		
Does the project include timber harvest? (if yes, report acreage below)		\boxtimes
Estimated total acres of timber harvest		
If known, estimated acres of timber harvest from April 1 to October 31		
If known, estimated acres of timber harvest from June 1 to July 31		
Does the project include prescribed fire? (if yes, report acreage below)		\boxtimes
Estimated total acres of prescribed fire		
If known, estimated acres of prescribed fire from April 1 to October 31		
If known, estimated acres of prescribed fire from June 1 to July 31		
Does the project install new wind turbines? (if yes, report capacity in MW below)		\boxtimes
Estimated wind capacity (MW)		

Agency Determination:

By signing this form, the action agency determines that this project may affect the NLEB, but that any resulting incidental take of the NLEB is not prohibited by the final 4(d) rule.

If the USFWS does not respond within 30 days from submittal of this form, the action agency may presume that its determination is informed by the best available information and that its project responsibilities under 7(a)(2) with respect to the NLEB are fulfilled through the USFWS January 5, 2016, Programmatic BO. The action agency will update this determination annually for multi-year activities.

The action agency understands that the USFWS presumes that all activities are implemented as described herein. The action agency will promptly report any departures from the described activities to the appropriate USFWS Field Office. The action agency will provide the appropriate USFWS Field Office with the results of any surveys conducted for the NLEB. Involved parties will promptly notify the appropriate USFWS Field Office upon finding a dead, injured, or sick NLEB.

Hold a Brio

Signature:

Date Submitted: <u>5-29-19</u>

⁴ Any activity that temporarily or permanently removes suitable forested habitat, including, but not limited to, tree removal from development, energy production and transmission, mining, agriculture, etc. (see page 48 of the BO).

⁵ If the project removes less than 10 trees and the acreage is unknown, report the acreage as less than 0.1 acre.

⁶ If the activity includes tree clearing in June and July, also include those acreage in April to October.

Andrea Eckardt

From:	Andrea Eckardt
Sent:	Friday, May 24, 2019 4:20 PM
То:	Cortes, Milton - NRCS, Raleigh, NC
Subject:	RE: AD1006 - Stream/Wetland Mitigation Project
Attachments:	Carpenter AD 1006 Final.pdf

Milton-

Thank you so much. Attached is the fully completed AD1006 Form for Carpenter Bottom Mitigation Site for your files.

Andrea

Andrea S. Eckardt | Senior Environmental Planner 704.332.7754 x101

From: Cortes, Milton - NRCS, Raleigh, NC <milton.cortes@usda.gov>
Sent: Tuesday, May 21, 2019 5:16 PM
To: Andrea Eckardt <aeckardt@wildlandseng.com>
Subject: RE: AD1006 - Stream/Wetland Mitigation Project

Andrea:

Please find attached the Farmland Conversion Impact Rating evaluation on Carpenter Bottom Mitigation Site, Gaston Co. NC

If I can be of further assistance please let us know.

Thanks

Milton Contes

State Soil Scientist USDA NRCS 4407 Bland Rd., Suite 117 Raleigh, NC 27609 Desk: 919-873-2171

From: Andrea Eckardt <a ckardt@wildlandseng.com</pre>
Sent: Thursday, May 9, 2019 3:17 PM
To: Cortes, Milton - NRCS, Raleigh, NC <<u>milton.cortes@usda.gov</u>>
Subject: FW: AD1006 - Stream/Wetland Mitigation Project

Hi Milton-

I was just following up on the email I sent April 29th regarding the Carpenter Bottom Stream and Wetland Mitigation Site.

Let me know if you need any additional information from me.

Andrea

Andrea S. Eckardt | Senior Environmental Planner 704.332.7754 x101

From: Andrea Eckardt
Sent: Monday, April 29, 2019 11:11 AM
To: Cortes, Milton - NRCS, Raleigh, NC <<u>Milton.Cortes@nc.usda.gov</u>>
Subject: AD1006 - Stream/Wetland Mitigation Project

Milton-

I have attached the partially completed AD1006 Form for the Carpenter Bottom Mitigation Site, located in Gaston County.

I have also included a USGS Topographic Map, a Concept Map, and a Soils Map associated with the proposed stream and wetland mitigation project.

The soils map includes a breakdown of acreage of each soil type with the project's conservation easement area.

Please let me know if you need anything else to complete Parts II and IV of the AD 1006 Farmland Conversion Form.

Thank you for your time,

Andrea

Andrea S. Eckardt | Senior Environmental Planner 704.332.7754 x101

Wildlands Engineering, Inc. 1430 S. Mint St, Suite 104 Charlotte, NC 28203

This electronic message contains information generated by the USDA solely for the intended recipients. Any unauthorized interception of this message or the use or disclosure of the information it contains may violate the law and subject the violator to civil or criminal penalties. If you believe you have received this message in error, please notify the sender and delete the email immediately.

U.S. Department of Agriculture

FARMLAND CONVERSION IMPACT RATING

DADT 1/To be completed by Foderal Agency	Date Of Land Evaluation Request								
PART I (To be completed by Federal Agency)									
Name Of Project		Federal Agency Involved							
Proposed Land Use		County And State							
PART II (To be completed by NRCS)		Date Requ	est Received By N	IRCS					
Does the site contain prime, unique, statewide	armland?	Yes N	Acres Irrigated	Average Farm	n Size				
(If no, the FPPA does not apply do not com	ts of this form)								
Major Crop(s)	Farmable Land In C Acres:	Govt. Jurisdictior	າ %	Amount Of Far Acres:	mland As Define	ed in FPPA %			
Name Of Land Evaluation System Used	Name Of Local Site	e Assessment S	ystem	Date Land Eva	luation Returned	By NRCS			
PART III (To be completed by Federal Agency)				Alternative S	ite Rating				
			Site A	Site B	Site C	Site D			
A. Total Acres To Be Converted Directly									
B. Total Acres To Be Converted Indirectly									
C. Total Acres In Site									
PART IV (To be completed by NRCS) Land Eva	luation Information								
A. Total Acres Prime And Unique Farmland									
B. Total Acres Statewide And Local Importan	t Farmland								
C. Percentage Of Farmland In County Or Loc	al Govt. Unit To Be	Converted							
D. Percentage Of Farmland In Govt. Jurisdiction W	ith Same Or Higher Re	lative Value							
PART V (To be completed by NRCS) Land Eval Relative Value Of Farmland To Be Conve		100 Points)							
PART VI (To be completed by Federal Agency) Site Assessment Criteria (These criteria are explained in	7 CFR 658.5(b)	Maximum Points							
1. Area In Nonurban Use									
2. Perimeter In Nonurban Use									
3. Percent Of Site Being Farmed									
4. Protection Provided By State And Local Ge	overnment								
5. Distance From Urban Builtup Area									
6. Distance To Urban Support Services									
7. Size Of Present Farm Unit Compared To A	Verage								
8. Creation Of Nonfarmable Farmland									
9. Availability Of Farm Support Services									
10. On-Farm Investments									
11. Effects Of Conversion On Farm Support S									
12. Compatibility With Existing Agricultural Use									
TOTAL SITE ASSESSMENT POINTS	160								
PART VII (To be completed by Federal Agency)									
Relative Value Of Farmland (From Part V)	100								
Total Site Assessment (From Part VI above or a loca site assessment)	160								
TOTAL POINTS (Total of above 2 lines)		260							
Site Selected:	Date Of Selection			Was A Local Site / Yes		ed? o			
				res		<u> </u>			

Reason For Selection:

April 29, 2019

Shannon Deaton North Carolina Wildlife Resource Commission Division of Inland Fisheries 1721 Mail Service Center Raleigh, NC 27699

Subject: Carpenter Bottom Mitigation Site Gaston County, North Carolina

Dear Ms. Deaton,

Wildlands Engineering, Inc. requests review and comment on any possible issues that might emerge with respect to fish and wildlife issues associated with the proposed Carpenter Bottom Mitigation Site, a stream and wetland mitigation site located in Gaston County, NC. A USGS Topographic Map and a Project Conceptual Map showing the approximate project area are enclosed. The topographic figure was prepared from the Lincolnton West, 7.5-Minute USGS Topographic Quadrangle and the site is located at latitude 35.4089600, longitude -81.2604790.

The Carpenter Bottom Mitigation Site is being developed to provide in-kind mitigation for unavoidable stream channel and riparian wetland impacts. This project will include wetland restoration along with stream restoration and preservation of Carpenter's Branch and its unnamed tributaries, which all flow to Beaverdam Creek. Several sections of channel have been identified as significantly degraded. The site has been disturbed due to agricultural use, including cattle that have full access to the stream.

We thank you in advance for your timely response and cooperation. Please feel free to contact us with any questions that you may have concerning this project.

Sincerely,

andrea S. Eckardt

Andrea Eckardt Senior Environmental Scientist

<u>Attachment</u>: Figure 1 USGS Topographic Map Figure 2 Project Conceptual Map

ROY COOPER Governor MICHAEL S. REGAN Secretary TIM BAUMGARTNER Director

5/1/2019

Stephen Yerka & Russell Townsend Historic Preservation Specialists Tribal Historic Preservation Office Eastern Band of the Cherokee Indians (828) 359-6852 syerka@nc-cherokee.com russtown@nc-cherokee.com

Dear Mr. Yerka and Mr. Townsend,

The North Carolina Department of Environmental Quality (NCDEQ) – Division of Mitigation Services (DMS) requests review and comment on any possible issues that might emerge with respect to archaeological or cultural resources associated with the proposed Carpenter Bottom mitigation site. The Federal Highway Administration (FHWA) is the lead federal agency for this proposed mitigation project.

The U.S. Army Corps of Engineers (USACE) issued a public notice (SAW-2018-02062) on 1/11/19 for this stream and wetland mitigation project. The USACE public notice closed on 2/27/19 and no response was received from the Eastern Band of the Cherokee Indians. Responses from the Cherokee Nation and NC SHPO are included for your review.

A USGS Topographic Map and a proposed project conceptual map showing the project area are enclosed. The topographic figure was prepared from the Lincolnton West, 7.5-Minute USGS Topographic Quadrangle. The project location (Latitude and Longitude) is as follows: 35°24'31"N,81°15'35"W.

The Carpenter Bottom Mitigation Site (Site) is located in Gaston County, NC approximately 4.1 miles south of the City of Lincolnton and just south of the Gaston County/Lincoln County border.

The site is being affected by heavy sedimentation, channelization, and nutrient loading. Poorly managed agricultural activities and alterations to stream channels, including loss of riparian vegetation are cited as contributing to sedimentation and habitat degradation via bank erosion. The site is currently accessible to cattle, but they will be excluded with the start of the project. It is planned to place approximately 15.2 acres under a permanent conservation easement. The project will yield 3,229 SMUs from restoration and preservation, and 8.2

North Carolina Department of Environmental Quality | Division of Mitigation Services 217 W. Jones Street | 1652 Mail Service Center | Raleigh, North Carolina 27699-1652 919.707.8976 WMUs, which consist of 6.8 acres of wetland re-establishment, and 2.1 acres of wetland rehabilitation.

We ask that you review this site based on the attached information to determine the presence of any known historic properties. We respectfully request a response within 30 days of receipt of this email in an effort to implement this necessary stream restoration/ mitigation project. Please feel free to contact us with any questions that you may have concerning this project.

Respectfully,

Paul Wiesner

Paul Wiesner Western Regional Supervisor North Carolina Department of Environmental Quality Division of Mitigation Services

828-273-1673 Mobile paul.wiesner@ncdenr.gov

Western DMS Field Office 5 Ravenscroft Drive Suite 102 Asheville, N.C. 28801

<u>Attachments:</u> Figure 1: USGS Topographic Map Figure 2: Proposed Project Conceptual Map Cherokee Nation Response to USACE Public Notice (SAW-2018-02062) NC SHPO Response to USACE Public Notice (SAW-2018-02062)

cc: Donnie Brew, FHWA

North Carolina Department of Environmental Quality | Division of Mitigation Services 217 W. Jones Street | 1652 Mail Service Center | Raleigh, North Carolina 27699-1652 919.707.8976

ROY COOPER Governor MICHAEL S. REGAN Secretary TIM BAUMGARTNER Director

> Erin Thompson & Sheila Bird Tribal Historic Preservation Office United Keetoowah Band of Cherokee 18263 W. Keetoowah Circle Tahlequah, OK 74464 918-871-2838 / 918-871-2852 ethompson@ukb-nsn.gov / sbird@ukb-nsn.gov

Dear Ms. Thompson and Ms. Bird,

The North Carolina Department of Environmental Quality (NCDEQ) – Division of Mitigation Services (DMS) requests review and comment on any possible issues that might emerge with respect to archaeological or cultural resources associated with the proposed Carpenter Bottom mitigation site. The Federal Highway Administration (FHWA) is the lead federal agency for this proposed mitigation project.

The U.S. Army Corps of Engineers (USACE) issued a public notice (SAW-2018-02062) on 1/11/19 for this stream and wetland mitigation project. The USACE public notice closed on 2/27/19 and no response was received from the United Keetoowah Band of Cherokee. Responses from the Cherokee Nation and NC SHPO are included for your review.

A USGS Topographic Map and a proposed project conceptual map showing the project area are enclosed. The topographic figure was prepared from the Lincolnton West, 7.5-Minute USGS Topographic Quadrangle. The project location (Latitude and Longitude) is as follows: 35°24'31"N,81°15'35"W.

The Carpenter Bottom Mitigation Site (Site) is located in Gaston County, NC approximately 4.1 miles south of the City of Lincolnton and just south of the Gaston County/Lincoln County border.

The site is being affected by heavy sedimentation, channelization, and nutrient loading. Poorly managed agricultural activities and alterations to stream channels, including loss of riparian vegetation are cited as contributing to sedimentation and habitat degradation via bank erosion. The site is currently accessible to cattle, but they will be excluded with the start of the project. It is planned to place approximately 15.2 acres under a permanent conservation easement. The project will yield 3,229 SMUs from restoration and preservation, and 8.2 WMUs, which consist of 6.8 acres of wetland re-establishment, and 2.1 acres of wetland rehabilitation.

North Carolina Department of Environmental Quality | Division of Mitigation Services 217 W. Jones Street | 1652 Mail Service Center | Raleigh, North Carolina 27699-1652 919.707.8976 5/1/2019

We ask that you review this site based on the attached information to determine the presence of any known historic properties. We respectfully request a response within 30 days of receipt of this letter in an effort to implement this necessary stream restoration/ mitigation project. Please feel free to contact us with any questions that you may have concerning this project.

Respectfully,

Paul Wiesner

Paul Wiesner Western Regional Supervisor North Carolina Department of Environmental Quality Division of Mitigation Services

828-273-1673 Mobile paul.wiesner@ncdenr.gov

Western DMS Field Office 5 Ravenscroft Drive Suite 102 Asheville, N.C. 28801

<u>Attachments:</u> Figure 1: USGS Topographic Map Figure 2: Proposed Project Conceptual Map Cherokee Nation Response to USACE Public Notice (SAW-2018-02062) NC SHPO Response to USACE Public Notice (SAW-2018-02062)

cc: Donnie Brew, FHWA

April 29, 2019

Claire Ellwanger US Fish and Wildlife Service Asheville Field Office 160 Zillicoa Street Asheville, NC 28801

Subject:Carpenter Bottom Mitigation SiteGaston County, North Carolina

Dear Ms. Ellwanger,

Wildlands Engineering, Inc. requests review and comment on any possible issues that might emerge with respect to endangered species, migratory birds, or other trust resources associated with the proposed Carpenter Bottom Mitigation Site, a stream and wetland mitigation site located in Gaston County, NC. A USGS Topographic Map and a Project Conceptual Map showing the approximate project area are enclosed. The topographic figure was prepared from the Lincolnton West, 7.5-Minute USGS Topographic Quadrangle and the site is located at latitude 35.4089600, longitude -81.2604790.

The Carpenter Bottom Mitigation Site is being developed to provide in-kind mitigation for unavoidable stream channel and riparian wetland impacts. This project will include wetland restoration along with stream restoration and preservation of Carpenter's Branch and its unnamed tributaries, which all flow to Beaverdam Creek. Several sections of channel have been identified as significantly degraded. The site has been disturbed due to agricultural use, including cattle that have full access to the stream.

According to your website (https://www.fws.gov/raleigh/species/cntylist/gaston.html) the threatened or endangered species for Gaston County are the Northern long-eared bat (*Myotis septentrionalis*), the bog turtle (*Glyptemys muhlenbergii*) the Dwarf-flowered heartleaf (*Hexastylis naniflora*), and the Schweinitz's Sunflower (*Helianthus schweinitzii*). If we have not heard from you in 30 days, we will assume that you do not have any comments regarding associated laws and that you do not have any information relevant to this project at the current time.

We thank you in advance for your timely response and cooperation. Please feel free to contact us with any questions that you may have concerning this project.

Sincerely, Indrea S. Eckardt

Andrea Eckardt Senior Environmental Scientist

<u>Attachment</u>: Figure 1 USGS Topographic Map

Figure 2 Project Conceptual Map

Andrea Eckardt

From:	Brew, Donnie (FHWA) <donnie.brew@dot.gov></donnie.brew@dot.gov>
Sent:	Wednesday, May 29, 2019 9:02 AM
То:	Ellwanger, Claire
Cc:	Wiesner, Paul; Andrea Eckardt; matthew.reid@ncdenr.gov
Subject:	NLEB 4(d) rule consultation - Carpenter Bottom mitigation site, Gaston County
Attachments:	Carpenter Bottom site- NLEB Consultation Form_5-29-19.docx; Figure 1 Carpenter Bottom site USGS map.pdf; Figure 2 Carpenter Bottom site map.pdf

Good morning Claire,

The purpose of this message is to notify your office that FHWA will use the streamlined consultation framework for the Carpenter Bottom Mitigation Site in Gaston County, NC.

Attached is a completed NLEB 4(d) Rule Streamlined Consultation form along with site maps/figures.

Thank you,

Donnie

Notifying the Service Under the Framework

Northern Long-Eared Bat 4(d) Rule Streamlined Consultation Form

Federal agencies (or designated non-federal representatives) should use the Northern Long-Eared Bat 4(d) Rule Streamlined Consultation form to notify the Service of their project and meet the requirements of the framework.

Northern Long-Eared Bat 4(d) Rule Streamlined Consultation Form (Word document)

Information requested in the Northern Long-Eared Bat 4(d) Rule Streamlined Consultation Form serves to

(1) notify the field office that an action agency will use the streamlined framework;

(2) describe the project with sufficient detail to support the required determination; and

(3) enable the USFWS to track effects and determine if reinitiation of consultation for the 4(d) rule is required. This form requests the minimum amount of information required for the Service to be able to track this information.

Providing information in the Streamlined Consultation Form does not address section 7(a)(2) compliance for any other listed species.

Donnie Brew Preconstruction & Environment Engineer Federal Highway Administration

310 New Bern Ave, Suite 410 Raleigh, NC 27601 <u>donnie.brew@dot.gov</u> 919-747-7017

Please consider the environment before printing this email.

Northern Long-Eared Bat 4(d) Rule Streamlined Consultation Form

Federal agencies should use this form for the optional streamlined consultation framework for the northern longeared bat (NLEB). This framework allows federal agencies to rely upon the U.S. Fish and Wildlife Service's (USFWS) January 5, 2016, intra-Service Programmatic Biological Opinion (BO) on the final 4(d) rule for the NLEB for section 7(a)(2) compliance by: (1) notifying the USFWS that an action agency will use the streamlined framework; (2) describing the project with sufficient detail to support the required determination; and (3) enabling the USFWS to track effects and determine if reinitiation of consultation is required per 50 CFR 402.16.

This form is not necessary if an agency determines that a proposed action will have no effect to the NLEB or if the USFWS has concurred in writing with an agency's determination that a proposed action may affect, but is not likely to adversely affect the NLEB (i.e., the standard informal consultation process). Actions that may cause prohibited incidental take require separate formal consultation. Providing this information does not address section 7(a)(2) compliance for any other listed species.

Info	rmation to Determine 4(d) Rule Compliance:	YES	NO
	Does the project occur wholly outside of the WNS Zone ¹ ?		\boxtimes
2.	Have you contacted the appropriate agency ² to determine if your project is near known hibernacula or maternity roost trees?	\boxtimes	
3.	Could the project disturb hibernating NLEBs in a known hibernaculum?		\boxtimes
4.	Could the project alter the entrance or interior environment of a known hibernaculum?		\boxtimes
	Does the project remove any trees within 0.25 miles of a known hibernaculum at any time of year?		\boxtimes
6.	Would the project cut or destroy known occupied maternity roost trees, or any other trees within a 150-foot radius from the maternity roost tree from June 1 through July 31.		\boxtimes

You are eligible to use this form if you have answered yes to question #1 <u>or</u> yes to question #2 <u>and</u> no to questions 3, 4, 5 and 6. The remainder of the form will be used by the USFWS to track our assumptions in the BO.

Agency and Applicant³ (Name, Email, Phone No.): FHWA, Donnie Brew, <u>Donnie.brew@dot.gov</u>, 919-747-7017

Project Name: Carpenter Bottom Mitigation Site

Project Location (include coordinates if known): 35.4089600"N 80.2604790"W

Basic Project Description (provide narrative below or attach additional information):

The Carpenter Bottom Mitigation Site is a stream and wetland mitigation project located in Gaston County, approximately 4.1 miles south of the City of Lincolnton and just south of the Gaston County/Lincoln County border. The project will include the restoration and enhancement of Carpenter's Branch and several unnamed tributaries. Proposed mitigation areas are currently active cattle and hay pasture with limited forested canopy. The project will provide 3,229 stream mitigation units and 8.2 riparian wetland mitigation units to the Division of Mitigation Services in the Catawba River Basin (03050103 expanded service area). Construction of the stream restoration project will include some tree removal (>3"DBH) – approximately 2.5 acres.

¹ http://www.fws.gov/midwest/endangered/mammals/nleb/pdf/WNSZone.pdf

² See http://www.fws.gov/midwest/endangered/mammals/nleb/nhisites.html

³ If applicable - only needed for federal actions with applicants (e.g., for a permit, etc.) who are party to the consultation.

General Project Information	YES	NO
Does the project occur within 0.25 miles of a known hibernaculum? (47 miles)		\boxtimes
Does the project occur within 150 feet of a known maternity roost tree?		\boxtimes
Does the project include forest conversion ⁴ ? (if yes, report acreage below)	\boxtimes	
Estimated total acres of forest conversion	2.5	ac
If known, estimated acres ⁵ of forest conversion from April 1 to October 31		
If known, estimated acres of forest conversion from June 1 to July 31 ⁶		
Does the project include timber harvest? (if yes, report acreage below)		\boxtimes
Estimated total acres of timber harvest		
If known, estimated acres of timber harvest from April 1 to October 31		
If known, estimated acres of timber harvest from June 1 to July 31		
Does the project include prescribed fire? (if yes, report acreage below)		\boxtimes
Estimated total acres of prescribed fire		
If known, estimated acres of prescribed fire from April 1 to October 31		
If known, estimated acres of prescribed fire from June 1 to July 31		
Does the project install new wind turbines? (if yes, report capacity in MW below)		\boxtimes
Estimated wind capacity (MW)		

Agency Determination:

By signing this form, the action agency determines that this project may affect the NLEB, but that any resulting incidental take of the NLEB is not prohibited by the final 4(d) rule.

If the USFWS does not respond within 30 days from submittal of this form, the action agency may presume that its determination is informed by the best available information and that its project responsibilities under 7(a)(2) with respect to the NLEB are fulfilled through the USFWS January 5, 2016, Programmatic BO. The action agency will update this determination annually for multi-year activities.

The action agency understands that the USFWS presumes that all activities are implemented as described herein. The action agency will promptly report any departures from the described activities to the appropriate USFWS Field Office. The action agency will provide the appropriate USFWS Field Office with the results of any surveys conducted for the NLEB. Involved parties will promptly notify the appropriate USFWS Field Office upon finding a dead, injured, or sick NLEB.

Hold a Brio

Signature:

Date Submitted: <u>5-29-19</u>

⁴ Any activity that temporarily or permanently removes suitable forested habitat, including, but not limited to, tree removal from development, energy production and transmission, mining, agriculture, etc. (see page 48 of the BO).

⁵ If the project removes less than 10 trees and the acreage is unknown, report the acreage as less than 0.1 acre.

⁶ If the activity includes tree clearing in June and July, also include those acreage in April to October.

Andrea Eckardt

From:	Andrea Eckardt
Sent:	Friday, May 24, 2019 4:20 PM
То:	Cortes, Milton - NRCS, Raleigh, NC
Subject:	RE: AD1006 - Stream/Wetland Mitigation Project
Attachments:	Carpenter AD 1006 Final.pdf

Milton-

Thank you so much. Attached is the fully completed AD1006 Form for Carpenter Bottom Mitigation Site for your files.

Andrea

Andrea S. Eckardt | Senior Environmental Planner 704.332.7754 x101

From: Cortes, Milton - NRCS, Raleigh, NC <milton.cortes@usda.gov>
Sent: Tuesday, May 21, 2019 5:16 PM
To: Andrea Eckardt <aeckardt@wildlandseng.com>
Subject: RE: AD1006 - Stream/Wetland Mitigation Project

Andrea:

Please find attached the Farmland Conversion Impact Rating evaluation on Carpenter Bottom Mitigation Site, Gaston Co. NC

If I can be of further assistance please let us know.

Thanks

Milton Contes

State Soil Scientist USDA NRCS 4407 Bland Rd., Suite 117 Raleigh, NC 27609 Desk: 919-873-2171

From: Andrea Eckardt <a ckardt@wildlandseng.com</pre>
Sent: Thursday, May 9, 2019 3:17 PM
To: Cortes, Milton - NRCS, Raleigh, NC <<u>milton.cortes@usda.gov</u>>
Subject: FW: AD1006 - Stream/Wetland Mitigation Project

Hi Milton-

I was just following up on the email I sent April 29th regarding the Carpenter Bottom Stream and Wetland Mitigation Site.

Let me know if you need any additional information from me.

Andrea

Andrea S. Eckardt | Senior Environmental Planner 704.332.7754 x101

From: Andrea Eckardt
Sent: Monday, April 29, 2019 11:11 AM
To: Cortes, Milton - NRCS, Raleigh, NC <<u>Milton.Cortes@nc.usda.gov</u>>
Subject: AD1006 - Stream/Wetland Mitigation Project

Milton-

I have attached the partially completed AD1006 Form for the Carpenter Bottom Mitigation Site, located in Gaston County.

I have also included a USGS Topographic Map, a Concept Map, and a Soils Map associated with the proposed stream and wetland mitigation project.

The soils map includes a breakdown of acreage of each soil type with the project's conservation easement area.

Please let me know if you need anything else to complete Parts II and IV of the AD 1006 Farmland Conversion Form.

Thank you for your time,

Andrea

Andrea S. Eckardt | Senior Environmental Planner 704.332.7754 x101

Wildlands Engineering, Inc. 1430 S. Mint St, Suite 104 Charlotte, NC 28203

This electronic message contains information generated by the USDA solely for the intended recipients. Any unauthorized interception of this message or the use or disclosure of the information it contains may violate the law and subject the violator to civil or criminal penalties. If you believe you have received this message in error, please notify the sender and delete the email immediately.

U.S. Department of Agriculture

FARMLAND CONVERSION IMPACT RATING

DADT 1/To be completed by Foderal Agency	Date Of Land Evaluation Request								
PART I (To be completed by Federal Agency)									
Name Of Project		Federal Agency Involved							
Proposed Land Use		County And State							
PART II (To be completed by NRCS)		Date Requ	est Received By N	IRCS					
Does the site contain prime, unique, statewide	armland?	Yes N	Acres Irrigated	Average Farm	n Size				
(If no, the FPPA does not apply do not com	ts of this form)								
Major Crop(s)	Farmable Land In C Acres:	Govt. Jurisdictior	າ %	Amount Of Far Acres:	mland As Define	ed in FPPA %			
Name Of Land Evaluation System Used	Name Of Local Site	e Assessment S	ystem	Date Land Eva	luation Returned	By NRCS			
PART III (To be completed by Federal Agency)				Alternative S	ite Rating				
			Site A	Site B	Site C	Site D			
A. Total Acres To Be Converted Directly									
B. Total Acres To Be Converted Indirectly									
C. Total Acres In Site									
PART IV (To be completed by NRCS) Land Eva	luation Information								
A. Total Acres Prime And Unique Farmland									
B. Total Acres Statewide And Local Importan	t Farmland								
C. Percentage Of Farmland In County Or Loc	al Govt. Unit To Be	Converted							
D. Percentage Of Farmland In Govt. Jurisdiction W	ith Same Or Higher Re	lative Value							
PART V (To be completed by NRCS) Land Eval Relative Value Of Farmland To Be Conve		100 Points)							
PART VI (To be completed by Federal Agency) Site Assessment Criteria (These criteria are explained in	7 CFR 658.5(b)	Maximum Points							
1. Area In Nonurban Use									
2. Perimeter In Nonurban Use									
3. Percent Of Site Being Farmed									
4. Protection Provided By State And Local Ge	overnment								
5. Distance From Urban Builtup Area									
6. Distance To Urban Support Services									
7. Size Of Present Farm Unit Compared To A	Verage								
8. Creation Of Nonfarmable Farmland									
9. Availability Of Farm Support Services									
10. On-Farm Investments									
11. Effects Of Conversion On Farm Support S									
12. Compatibility With Existing Agricultural Use									
TOTAL SITE ASSESSMENT POINTS	160								
PART VII (To be completed by Federal Agency)									
Relative Value Of Farmland (From Part V)	100								
Total Site Assessment (From Part VI above or a loca site assessment)	160								
TOTAL POINTS (Total of above 2 lines)		260							
Site Selected:	Date Of Selection			Was A Local Site / Yes		ed? o			
				res		<u> </u>			

Reason For Selection:

April 29, 2019

Shannon Deaton North Carolina Wildlife Resource Commission Division of Inland Fisheries 1721 Mail Service Center Raleigh, NC 27699

Subject: Carpenter Bottom Mitigation Site Gaston County, North Carolina

Dear Ms. Deaton,

Wildlands Engineering, Inc. requests review and comment on any possible issues that might emerge with respect to fish and wildlife issues associated with the proposed Carpenter Bottom Mitigation Site, a stream and wetland mitigation site located in Gaston County, NC. A USGS Topographic Map and a Project Conceptual Map showing the approximate project area are enclosed. The topographic figure was prepared from the Lincolnton West, 7.5-Minute USGS Topographic Quadrangle and the site is located at latitude 35.4089600, longitude -81.2604790.

The Carpenter Bottom Mitigation Site is being developed to provide in-kind mitigation for unavoidable stream channel and riparian wetland impacts. This project will include wetland restoration along with stream restoration and preservation of Carpenter's Branch and its unnamed tributaries, which all flow to Beaverdam Creek. Several sections of channel have been identified as significantly degraded. The site has been disturbed due to agricultural use, including cattle that have full access to the stream.

We thank you in advance for your timely response and cooperation. Please feel free to contact us with any questions that you may have concerning this project.

Sincerely,

andrea S. Eckardt

Andrea Eckardt Senior Environmental Scientist

<u>Attachment</u>: Figure 1 USGS Topographic Map Figure 2 Project Conceptual Map

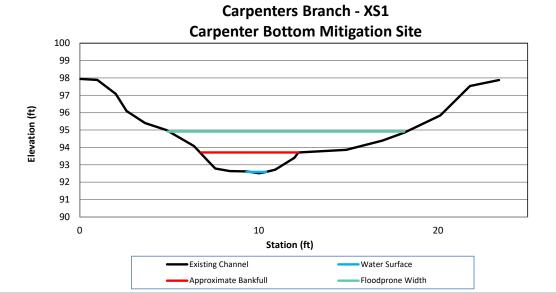
APPENDIX 6 Data, Analysis, and Supplementary Design Information

Parameter	Notation	Units	Carpenter's Branch Reach 1	UT1	UT2	UT3
stream type			G4	G4/5	G4/5	G4/5
drainage area	DA	sq mi	0.28	0.03	0.06	0.03
bankfull cross-sectional area	A_{bkf}	SF	7.0	1.8	3.4	2.8
avg velocity during bankfull event	v _{bkf}	fps	2.0	3.8	3.5	2.2
width at bankfull	W _{bkf}	feet	10.2	3.1	4.2	9.5
maximum depth at bankfull	d_{max}	feet	1.2	0.8	1.2	0.7
mean depth at bankfull	d_{bkf}	feet	0.7	0.6	0.8	0.3
bankfull width to depth ratio	w_{bkf}/d_{bkf}		14.9	5.2	5.2	31.9
low bank height		feet	4.1	4.9	1.6	1.0
bank height ratio	BHR		3.4	6.1	1.3	1.3
floodprone area width	\mathbf{W}_{fpa}	feet	14.2	4.2	N/A	N/A
entrenchment ratio	ER		1.4	1.4	N/A	N/A
max pool depth at bankfull	d_{pool}	feet	1.9	N/A	N/A	N/A
pool depth ratio	d_{pool}/d_{bkf}		2.7	N/A	N/A	N/A
pool width at bankfull	w _{pool}	feet	6.4	N/A	N/A	N/A
pool width ratio	w _{pool} /w _{bkf}		0.6	N/A	N/A	N/A
Bkf pool cross-sectional area	A _{pool}	SF	7.6	N/A	N/A	N/A
pool area ratio	A_{pool}/A_{bkf}		1.1	N/A	N/A	N/A
pool-pool spacing	р-р	feet	23.7	N/A	N/A	N/A
pool-pool spacing ratio	p-p/W _{bkf}		2.3	N/A	N/A	N/A
valley slope	S_{valley}	feet/foot	0.0140	0.0294	0.0118	0.0235
channel slope	S _{channel}	feet/foot	0.0130	0.0258	0.0116	0.0228
sinuosity	К		1.13	1.14	1.02	1.03
belt width	w_{blt}	feet	N/A	N/A	N/A	N/A
meander width ratio	w_{blt}/w_{bkf}		N/A	N/A	N/A	N/A
meander length	L _m	feet	N/A	N/A	N/A	N/A
meander length ratio	L_m/w_{bkf}		N/A	N/A	N/A	N/A
linear wavelength	LW		N/A	N/A	N/A	N/A
linear wavelength ratio	LW/w _{bkf}		N/A	N/A	N/A	N/A
radius of curvature	R _c	feet	N/A	N/A	N/A	N/A
radius of curvature ratio	R_c / w_{bkf}		N/A	N/A	N/A	N/A

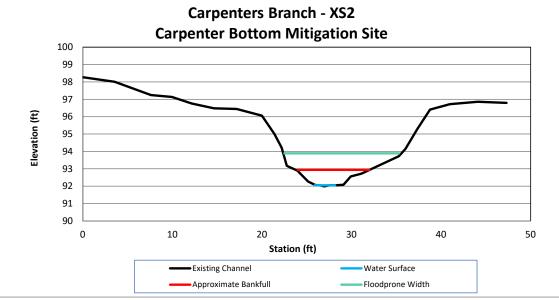
N/A¹ - Pattern data not applicable

N/A² - Pool section not present in field

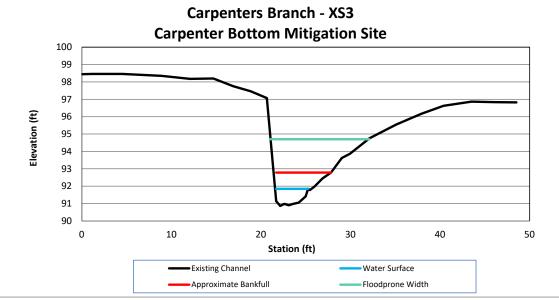
					TOP	osed Geomo	PINCEAL	ameters									_
			Carper	nter Reach	n 1		UT1			UT2		UT3			UT4		
	Notation	Units	Typical Section Values	Min	Max	Typical Section Values	Min	Max	Typical Section Values	Min	Max	Typical Section Values	Min	Max	Typical Section Values	Min	Max
stream type				C4			C4			C4			C4b			C4	
drainage area	DA	sq mi		0.26			0.03			0.06			0.03			0.04	
design discharge	Q	cfs		14			6			8			8			6	
bankfull cross-sectional area	A _{bkf}	SF		4.4			1.9			2.9			2.9			1.9	
average velocity during bankfull event	v_{bkf}	fps		3.2			3.3			3.0			3.8			2.8	
						Cross-S	ection		-			-					
width at bankfull	W _{bkf}	feet		7.5			5.0			6.0			6.0			5.0	
maximum depth at bankfull	d _{max}	feet	0.7	0.7	0.9	0.5	0.5	0.6	0.7	0.6	0.8	0.7	0.6	0.8	0.5	0.5	0.6
mean depth at bankfull	d _{bkf}	feet		0.6			0.4			0.5			0.5			0.4	
bankfull width to depth ratio	w_{bkf}/d_{bkf}			12.5			12.5			12			12			12.5	
max depth ratio	d_{max}/d_{bkf}			1.2			1.25			1.4			1.4			1.25	
bank height ratio	BHR		1.0	1.0	1.1	1.0	1.0	1.1	1.0	1.0	1.1	1.0	1.0	1.1	1.0	1.0	1.1
floodprone area width	W _{fpa}	feet	26+	17	26	18+	11	18	21+	13	21	21+	13	21	18+	11	18
entrenchment ratio	ER		3.5+	2.2	3.5	3.5+	2.2	3.5	3.5+	2.2	3.5	3.5+	2.2	3.5	3.5+	2.2	3.5
						Slo	ре										
valley slope	S _{valley}	feet/ foot	(0.0144		C	.0220			0.0100			0.0270			0.0200	
channel slope	S _{chnl}	feet/ foot	(0.0120		C	0.0170			0.0080			0.0230			0.0100	
						Pro	file										
riffle slope	S _{riffle}	feet/ foot		0.0144	0.0300		0.0204	0.0425		0.0096	0.0224		0.0276	0.0644		0.0120	0.025
riffle slope ratio	S _{riffle} /S _{chnl}			1.2	2.5		1.2	2.5		1.2	2.8		1.2	2.8		1.2	2.5
pool slope	Sp	feet/ foot		0.0000	0.0024		0.0000	0.0036		0.0000	0.0031		0.0000	0.0031		0.0000	0.003
pool slope ratio	S _p /S _{chnl}			0.0	0.2		0.0	0.2		0.0	0.2		0.0	0.2		0.0	0.2
pool-to-pool spacing	L _{p-p}	feet		23	53		15	35		18	42		18	42		15	35
pool spacing ratio	L _{p-p} /w _{bkf}			3.0	7.0		3.0	7.0		3.0	7.0		3.0	7.0		3.0	7.0
pool cross-sectional area	A _{pool}	SF		5.3	11.1		2.3	4.7		3.4	7.1		3.4	7.1		2.3	4.7
pool area ratio	A _{pool} /A _{bkf}			1.2	2.5		1.2	2.5		1.2	2.5		1.2	2.5		1.2	2.5
maximum pool depth	d _{pool}	feet		0.9	2.1		0.6	1.3		0.7	1.7		0.7	1.7		0.6	1.3
pool depth ratio	d_{pool}/d_{bkf}			1.1	1.5		1.5	3.5		1.5	3.5		1.5	3.5		1.5	3.5
pool width at bankfull	w _{pool}	feet		10.2			6.8			8.1			8.1	6.8			
pool width ratio	w _{pool} /w _{bkf}			1.4			1.4			1.35			1.35			1.4	
	1 1		-			Patt			-							1	
sinuosity	К			1.20			1.30			1.25	1		1.17	1		¹	
belt width	W _{blt}	feet		26	60		10	40		12	48		12	48		¹	
meander width ratio	w _{blt} /w _{bkf}			3.5	8		2	8		2	8		2	8		¹	
linear wavelength (formerly meander length)	LW	feet		23	101		15	68		18	81		18	81		¹	
linear wavelength ratio (formerly meander length ratio)	LW/w _{bkf}			3	13.5		3.0	13.5		3	13.5		3	13.5		¹	
meander length	L _m	feet		49	105		33	70		39	84		39	84		¹	
meander length ratio	L_m/W_{bkf}			6.5	14		6.5	14.0		6.5	14		6.5	14		¹	
radius of curvature	R _c	feet		14	26		9.0	18.0		10.8	21		10.8	21		9.0	18.0
radius of curvature ratio	R _c / w _{bkf}			1.8	3.5		1.8	3.5		1.8	3.5		1.8	3.5		1.8	3.5


¹Reach length less than 50'

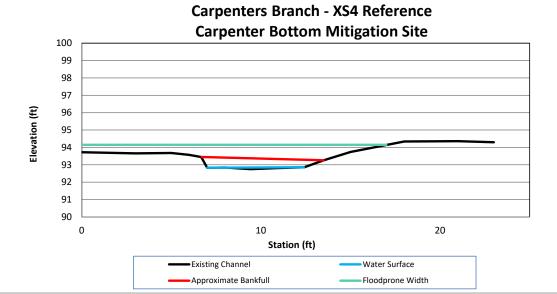
Appendix 6



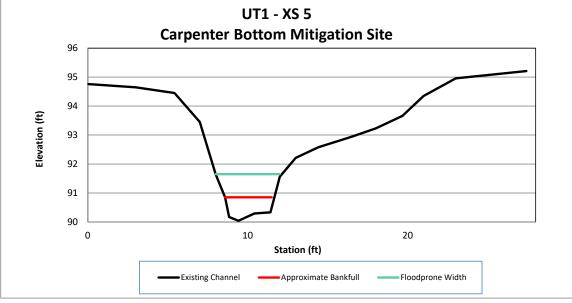
BHR	4.2
Entrenchment Ratio	2.44
FP Width (feet)	13.2



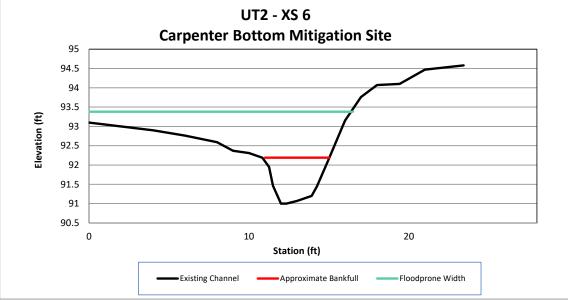
BHR	4.3
Entrenchment Ratio	1.60
FP Width (feet)	12.8



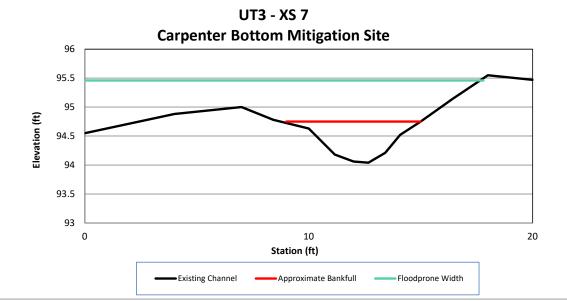
BHR	3.1
Entrenchment Ratio	1.81
FP Width (feet)	11.11



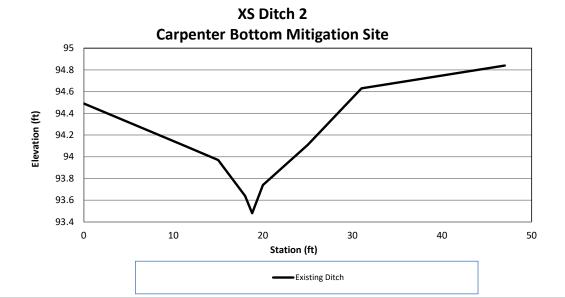
BHR	1.2
Entrenchment Ratio	2.50
FP Width (feet)	17



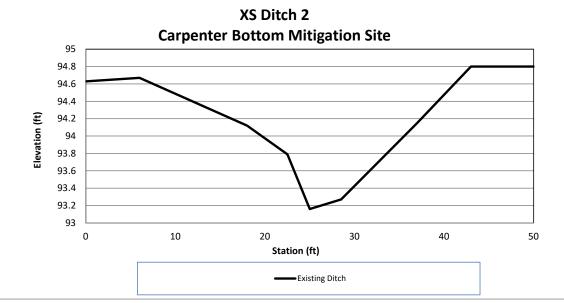
BHR5.4Entrenchment Ratio1.37FP Width (feet)4



BHR	1.8
Entrenchment Ratio	4.13
FP Width (feet)	16.5



BHR	1.5
Entrenchment Ratio	2.97
FP Width (feet)	17.8



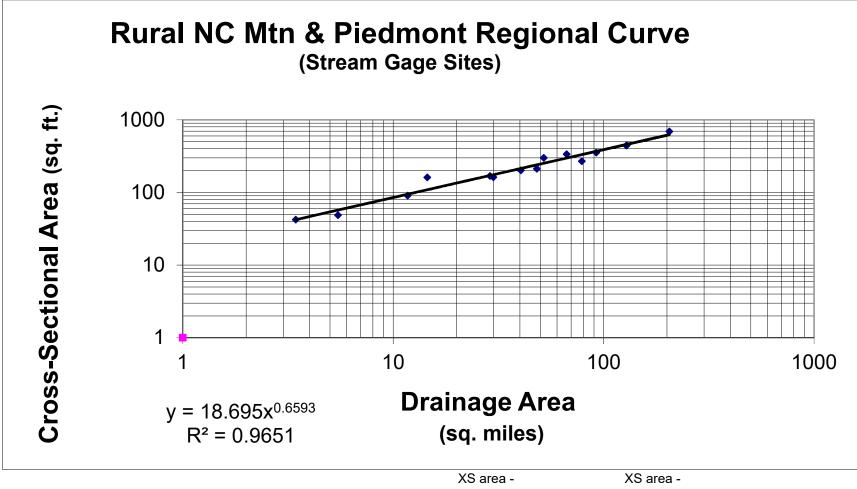
BHR	N/A
Entrenchment Ratio	N/A
FP Width (feet)	10

BHR	N/A
Entrenchment Ratio	N/A
FP Width (feet)	19

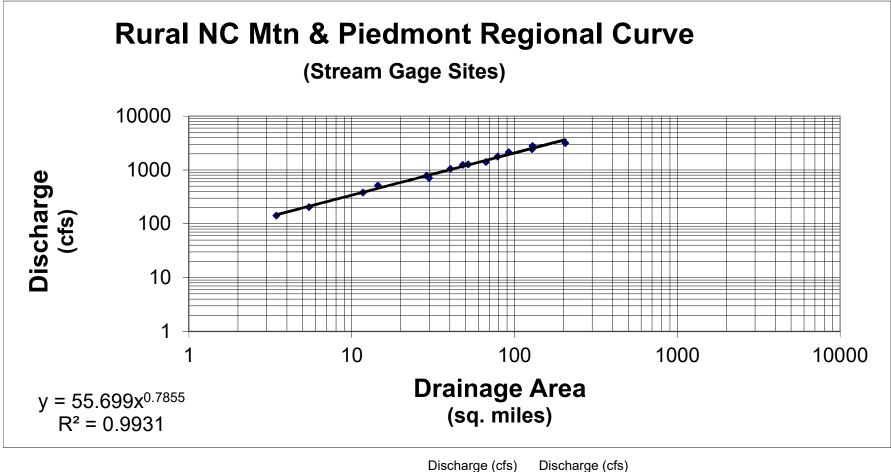
PEBBLE COUNT FIELD FORM				
Project Name:	Carpenter Bottom	Data Collected By: 5D/HR		
Location:		Data Collected On: 5/17/19		
Job #:		Reach: Existing Conditions Reach 1		
Date:		Cross Section #:		

Particle Class		Diameter (mm)		Particle Count	
		min	max	Riffle	Pool
SILT/CLAY	Silt/Clay	0.000	0.062	1	
	Very fine	0.062	0.125		
4	Fine	0.125	0.250		4111
st.	Medium	0.250	0.500		IHT
	Coarse	0.5	1.0		THI III
	Very Coarse	1.0	2.0	1111	110
	Very Fine	2.0	2.8	(1	1
	Very Fine	2.8	4.0	HUI	1
	Fine	4.0	5.7	HT HTTI	HTTI
	Fine	5.7	8.0	HT 111	111
1	Medium	8.0	11.3	HT 111	
	Medium	11.3	16.0	UNT	1
	Coarse	16.0	22.6	1111	[11]
Coarse		22.6	32	11	HT
	Very Coarse	32	45		111
	Very Coarse	45	64		
	Small	64	90		1
	Small	90	128		
	Large	128	180		
	Large	180	256		
	Small	256	362		
	Small	362	512		-
	Medium	512	1024		-
	Large/Very Large	1024	2048		
BEDROCK	Bedrock	2048	>2048		
			Total:		

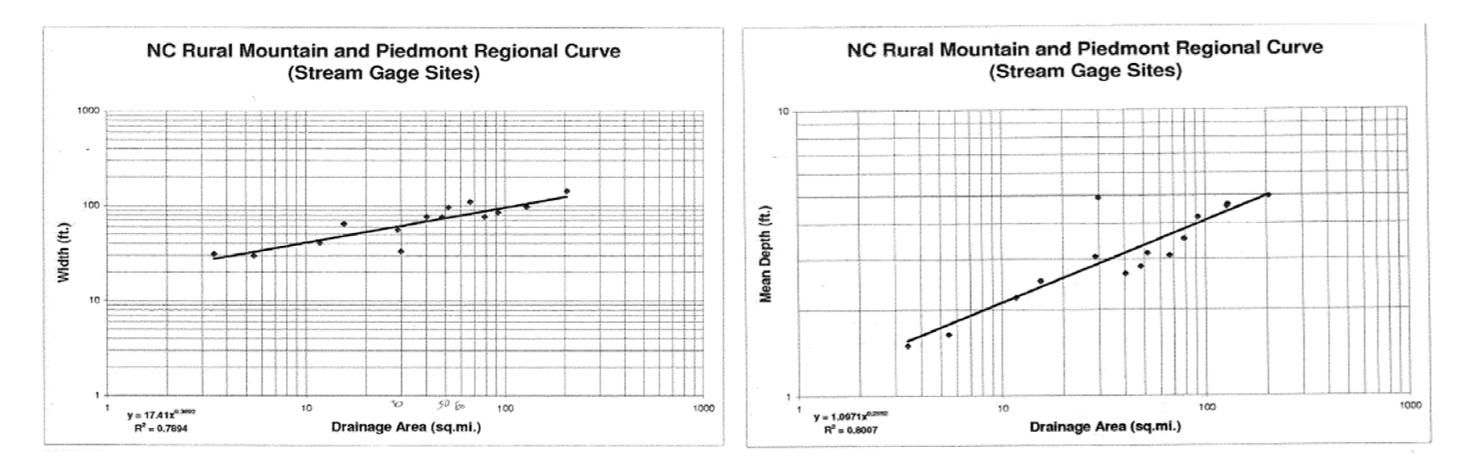
HI HI P2 HAT HAT IH HK HT IH HT HT


Largest Particle (mm):

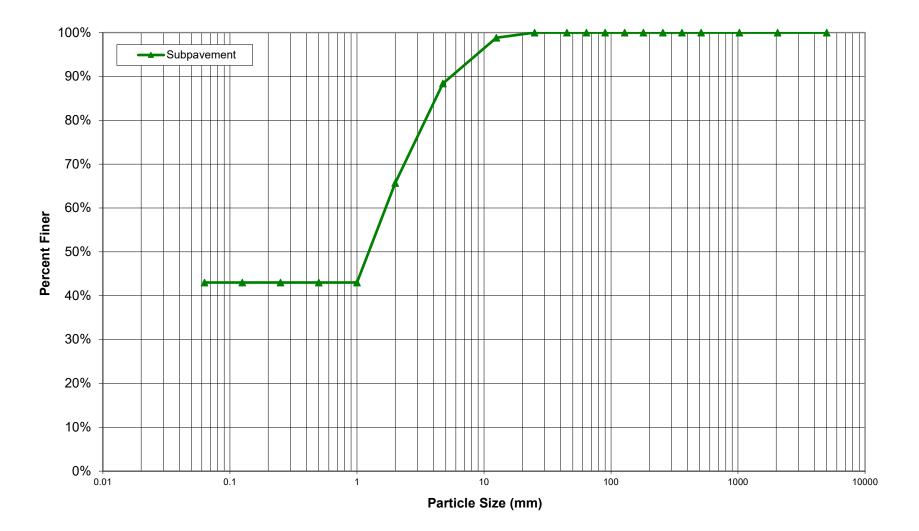
Z:\Technical Guidance\Templates\Sediment\PebbleCount Field Form


Project Name:	Carpenter	r Bo	Hom		Data Collected By: 5D/ HR
Location:	0				Data Collected On: 5/17 /19
ob #:					Reach:
Date:					Cross Section #: EC XS
Deri	l. Char	Diamet	er (mm)	Particle Count	I HAT IN
Parti	cle Class	min	max	Riffle	
SILT/CLAY	Silt/Clay	0.000	0.062		7 HH HH
	Very fine	0.062	0.125		115
	Fine	0.125	0.250	1	3 LAT LAI
SAND	Medium	0.250	0.500		LIHT HT
	Coarse	0.5	1.0		
	Very Coarse	1.0	2.0	411 11	S KII HI
	Very Fine	2.0	2.8	Mar	C HTT HT
	Very Fine	2.8	4.0	HI HA II	
	Fine	4.0	5.7		HAT HAT
	Fine	5.7	8.0	HI HI HI HI HI	O HAT HAT
GRAVEL	Medium	8.0	11.3	441 JHT WIT	A HAR HAR
CALS	Medium	11.3	16.0	HHT 1111	Hrl series
	Coarse	16.0	22.6	111	D HAT HAT
	Coarse	22.6	32	1	
	Very Coarse	32	45		
	Very Coarse	45	64		
	Small	64	90		<u></u>
BLE	Small	90	128		
COBBLE	Large	128	180		
	Large	180	256		
	Small	256	362		
. Set	Small	362	512		
B. B. Constant	Medium	512	1024		
	Large/Very Large	1024	2048		
BEDROCK	Bedrock	2048	>2048		
			Total:		

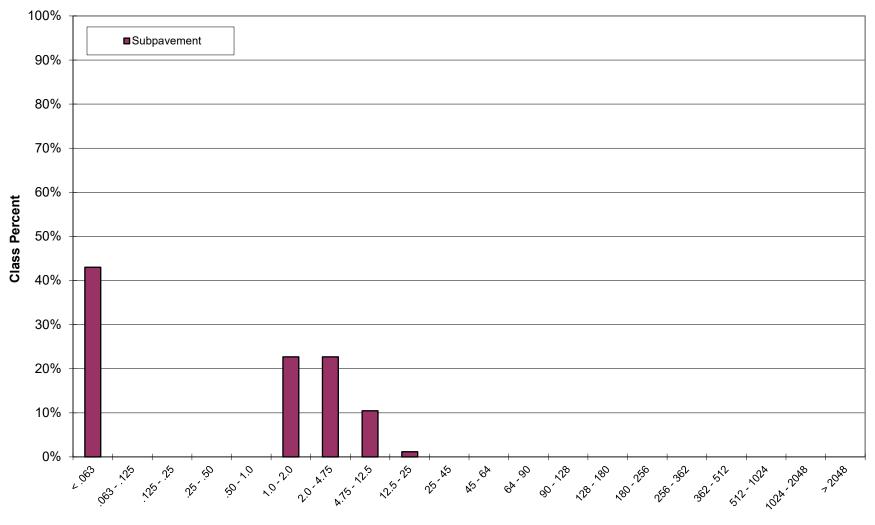
PEBBLE COUNT FIELD FORM


Largest Particle (mm):

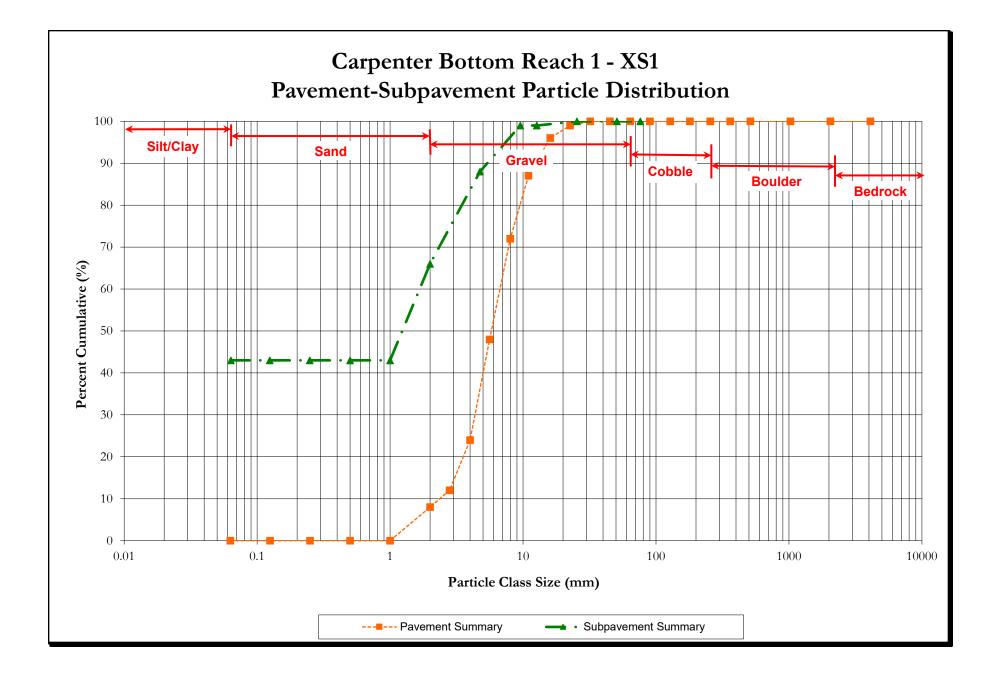
		square miles	Alan Walker	Regional Curve	
Carpenter Branch	Reach 1	0.27	7.89	8.13	
Carpenter Branch	Reach 2	0.28	8.08	8.32	
UT1		0.03	1.85	1.93	
UT2		0.05	2.59	2.70	
UT3		0.08	3.54	3.67	
UT4		0.04	2.24	2.33	



			Discharge (cis)	Discharge (cis)
		square miles	Alan Walker	Regional Curve
Carpenter Branch	Reach 1	0.27	19.92	19.90
Carpenter Branch	Reach 2	0.28	20.49	20.48
UT1		0.03	3.55	3.58
UT2		0.05	5.30	5.33
UT3		0.08	7.66	7.70
UT4		0.04	4.44	4.48



		square miles	BKF Width	Mean Depth
Carpenter Branch	Reach 1	0.27	10.74	0.76
Carpenter Branch	Reach 2	0.28	10.88	0.76
UT1		0.03	4.77	0.40
UT2		0.05	5.76	0.47
UT3		0.08	6.85	0.53
UT4		0.04	5.30	0.44


Carpenter Bottom Mitigation Site Carpenter Branch Reach 1 Subpavement Particle Size Distribution

Carpenter Branch Reach 1 Sieve Analysis Class Distribution

Particle Size Class (mm)

	EXISTING CO	NDITIONS			
	Carpenter Bottor				
Shear Stress Analysis	subpav				
Bankfull Xsec Area, Abkf (sq ft)	7.0				
Bankfull Width, Wbkf (ft)	10.2				
Bankfull Mean Depth, Dbkf (ft)	0.7				
Wetted Perimeter, WP=W+2D (ft)	11.6				
Hydraulic Radius, R (ft)	0.6				
Schan (ft/ft)	0.0130				
Boundary/Bankfull Shear Stress, t (lb/sq ft)	0.49				
d50 riffle 100 ct (mm)	5.8	}			
d50 (mm) - bar sample or subpavement	5.1				
ratio - d50pve/d50subpave (valid range 3-7)	1.1	3			
ratio - di/d50 pavement (valid range 1.3-3)	5.2	θ			
tci-equation 1	0.07	49			
tci-equation 2	0.0089				
D100 bar/subpavement or measured largest particle from lab sample (mm)	30.0				
d bar large (ft)	0.1	0			
Dcrit (ft) (equation 1)	0.9)			
Dcrit (ft) (equation 2)	0.1	-			
Scrit (equation 1)	0.017	137			
Scrit (equation 2)	0.002	206			
Largest moveable particle (Shields/CO curves)					
Bankfull Velocity (fps)	2.0				
Unit Stream Power (watts/ sq meter)	14.	3			
DIMENSIONAL SHEAR STRESS ANALYSIS	SHIELDS CURVE	ROSGEN CURVE			
T = YdS	0.49				
Movable particle size (mm)	37.0	89.9			
Predicted Shear Stress to move Dmax	0.40	0.11			
Predicted mean depth to move Dmax	0.49	0.14			
Predicted slope required to initiate movement of Dmax	0.0092	0.0025			
A for aggradational, D for degradational, according to the curves	D	D			

DESIGN CONDITIONS						
Carpenter Bottor	n Reach 1 - XS1					
subpav						
4.4	1					
7.5						
0.60						
7.8						
0.6						
0.0120						
	0.42					
5.8						
5.7						
5.1						
3.17 0.0746						
0.0089						
30.0						
0.10						
1.0						
0.12						
0.02018						
0.00242						
3.2						
19.	7					
SHIELDS CURVE	ROSGEN CURVE					
0.4						
31.8	80.7					
0.40	0.11					
0.53	0.15					
0.0107	0.0029					
D	D					

APPENDIX 7 Wetland Design Documents and Data

Soil & Environmental Consultants, PA

11010 Raven Ridge Road • Raleigh, North Carolina 27614 • Phone: (919) 846-5900 • Fax: (919) 846-9467 www.SandEC.com

PRELIMINARY HYDRIC SOIL INVESTIGATION

Carpenter's Bottom Project Site Piedmont Catawba River Basin Lincoln County, North Carolina

> Prepared for: Mr. Eric Neuhaus Wildlands 312 West Millbrook Road, Suite 225 Raleigh, NC 27609

August 1st, 2018

INTRODUCTION

Soil & Environmental Consultants, PA (S&EC, PA) was retained to perform a preliminary evaluation to assess the presence and extent of hydric soils onsite. Most of the area evaluated is currently in pasture.

METHODOLOGY

On April 16th, 2018 Kevin Martin (LSS, PWS) of S&EC, PA performed a hydric soil evaluation at the site. Hand auger borings were advanced on the property at locations as appropriate to approximately estimate the location and extent of hydric soils within the project area (see attached Approximate Hydric Soil Locations Map). Each soil boring was evaluated to assess the presence or absence of hydric soil indicators. Hydric soil indicators were identified utilizing the NRCS Field Indicators of Hydric Soils in the Unities States - A Guide for Identifying and Delineating Hydric Soils (Version 8.1, 2017). All areas evaluated are mapped as the Worsham soil series (Fine, mixed, active, thermic Typic Endoaquults) by NRCS. Most hydric soils observed onsite were in fact most like the Worsham soil series.

RESULTS

Numerous soil borings were performed within the study area. Soil characteristics were evaluated and all areas identified as containing hydric soils met the hydric soil criteria described below. An X" on the map indicates approximate soil boring locations. Depth to hydric soil indicators, were less than 10" and in most cases were less than 2" below land surface.

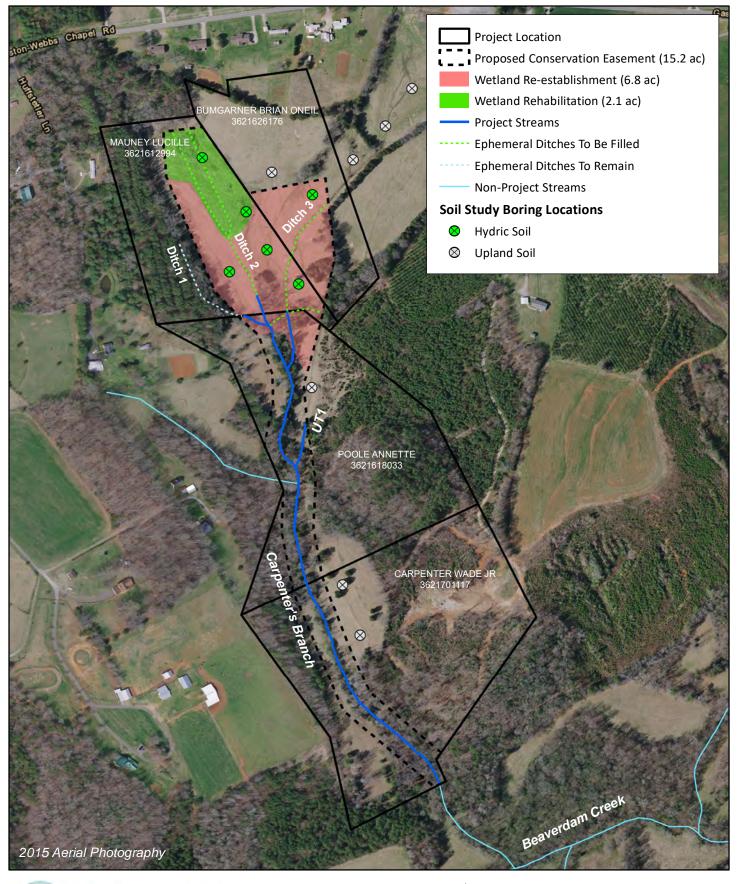
U- are non hydric soil areas

H- are hydric soils areas containing a depleted matrix.

Indicator F3: Depleted Matrix

Technical Description: A layer that has a depleted matrix with 60 percent

or more chroma of 2 or less and that has a minimum thickness of either:


(a) 2 in. (5 cm) if the 2 in. (5 cm) is entirely within the upper 6 in. (15 cm)

of the soil, or

(b) 6 in. (15 cm) starting within 10 in. (25 cm) of the soil surface.

Wetland Hydrology Indicators:

While all of the borings performed within areas identified as hydric soils on the attached map exhibited hydric soil indicators, many areas containing hydric soils did not exhibit Primary Wetland Hydrology or Secondary Wetland Hydrology Indicators.

0 200 400 Feet

Approximate Hydric Soils Locations Map Carpenter Bottom Mitigation Site Catawba River Basin 03050102

Gaston County, NC

Soil & Environmental Consultants, PA

11010 Raven Ridge Road • Raleigh, North Carolina 27614 • Phone: (919) 846-5900 • Fax: (919) 846-9467 www.SandEC.com

HYDRIC SOIL INVESTIGATION Carpenter Bottom Project Site Piedmont Catawba River Basin Gaston County, North Carolina

Prepared for: Mr. Eric Neuhaus Wildlands 312 West Millbrook Road, Suite 225 Raleigh, NC 27609

August 11th, 2018 Revised May 8th, 2020

INTRODUCTION

Soil & Environmental Consultants, PA (S&EC, PA) was retained to perform a preliminary evaluation to assess the presence and extent of hydric soils onsite. Most of the area evaluated is currently in pasture.

METHODOLOGY

On April 16th, 2018 and April 24th, 2020 Kevin Martin (LSS, PWS) of S&EC, PA performed hydric soil evaluations at the site. Hand auger borings were advanced on the property at locations as appropriate to approximately estimate the location and extent of hydric soils within the project area (see attached Hydric Soil Locations Map). Each soil boring was evaluated to assess the presence or absence of hydric soil indicators. Hydric soil indicators were identified utilizing the NRCS Field Indicators of Hydric Soils in the Unities States - A Guide for Identifying and Delineating Hydric Soils (Version 8.1, 2017) in 2018 and Field Indicators of Hydric Soils in the United States - A Guide for Identifying and Delineating Hydric Soils (Version 8.2, 2018) in 2020.

All areas evaluated are mapped as the Worsham soil series (Fine, mixed, active, thermic Typic Endoaquults) by NRCS. Most hydric soils observed onsite were in fact most like the Worsham soil series.

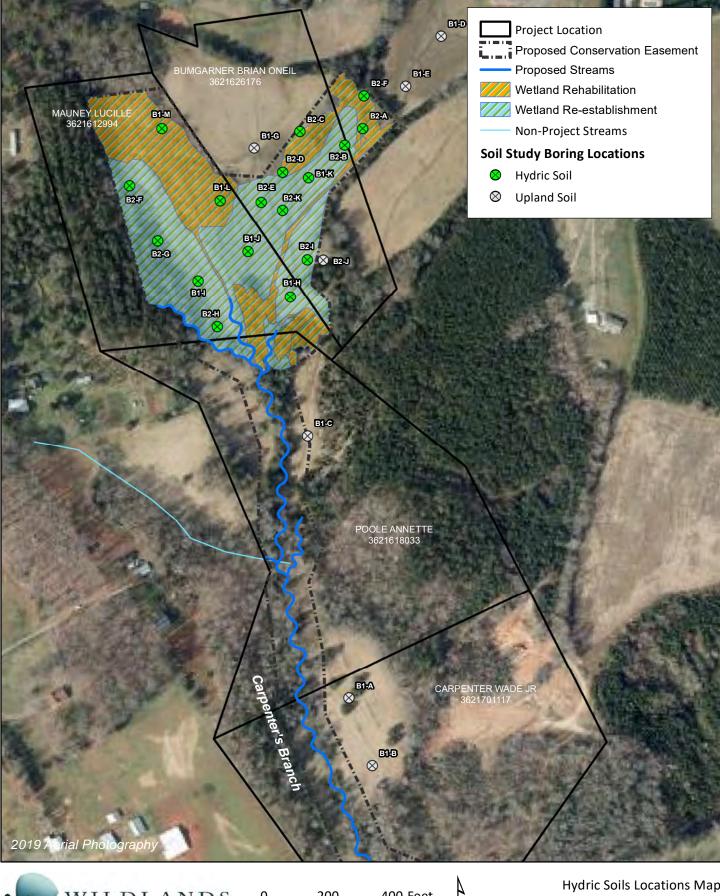
RESULTS

Twenty four soil borings were performed within the study area. Borings B1-A to B1-M are all from the 2018 soils evaluation. Borings B2-A to B2-K are from the 2020 soils evaluation. Soil characteristics were evaluated and all areas identified as containing hydric soils met the hydric soil criteria described below.

A circle with an "X" inside on the map indicates approximate soil boring locations. Green circles are at locations that contained hydric soils while the gray circles are at non-hydric soil locations. Depth to hydric soil indicators, were less than 10" and in most cases were less than 2" below land surface. Hydric soils areas contain a depleted matrix.

Indicator F3: Depleted Matrix

Technical Description: A layer that has a depleted matrix with 60 percent


or more chroma of 2 or less and that has a minimum thickness of either:

(a) 2 in. (5 cm) if the 2 in. (5 cm) is entirely within the upper 6 in. (15 cm)

of the soil, or

(b) 6 in. (15 cm) starting within 10 in. (25 cm) of the soil surface.

Two of the borings within the hydric soil area in 2020 contained the F3a indicator (B2-A and B2-F) while all of the other borings performed in 2018 and 2020 within hydric soil areas contained the F3b indicator. Typical soil profiles are attached for borings that were performed at B2-K and B2-F and are representative of the F3a and F3a hydric soil indicators respectively.

0 200 400 Feet

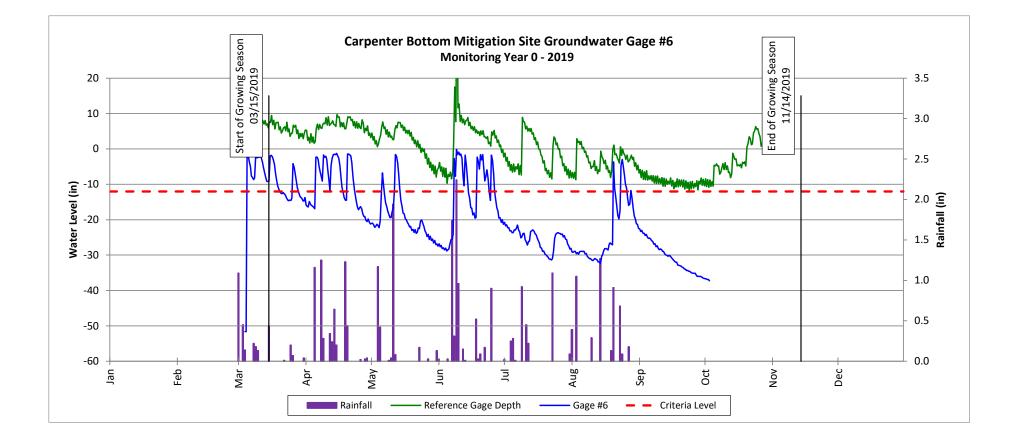
Ņ

Hydric Soils Locations Map Revised Based on Updated Investigation Carpenter Bottom Mitigation Site Catawba River Basin 03050102

Gaston County, NC

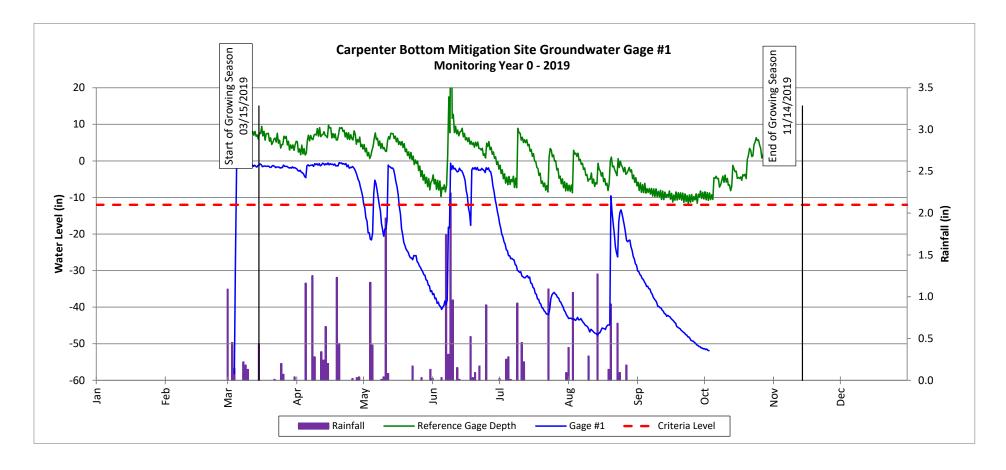
Soil Profile #1 / Boring Location B2-K

Hydric Soil Indicator: F3b

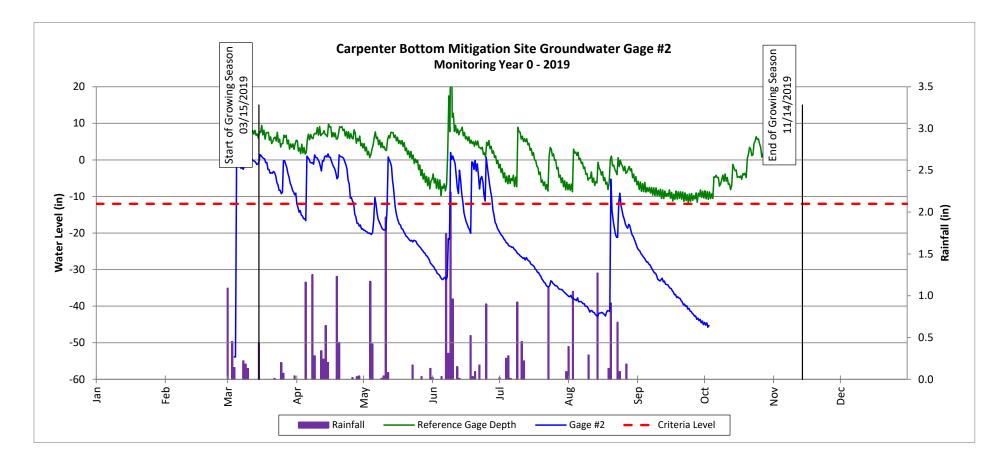

Series and Taxonomic Class: Worsham – Fine, mixed, active, thermic Typic Endoaquults

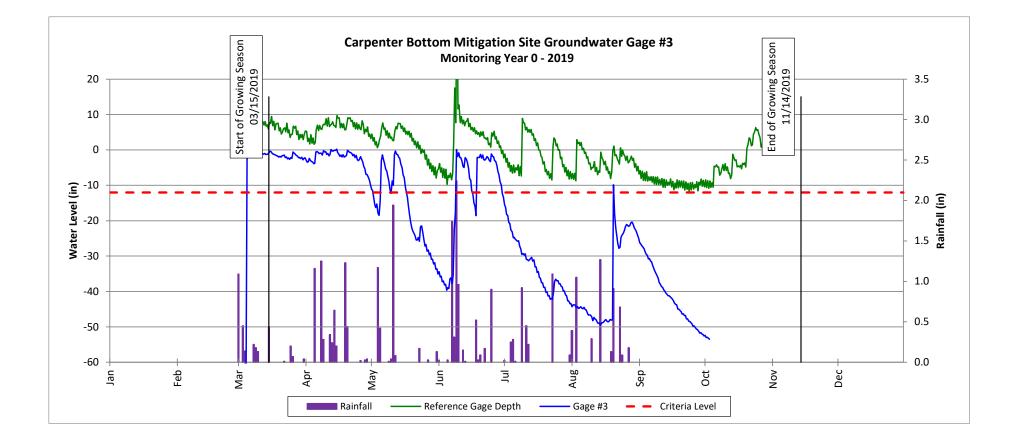
Horizon	Herizon	Matrix		Redox Features				Tautura	N. L.
Depth (inches)	Horizon	Color % (moist)	Color (moist)	%	Туре	Location	Texture	Notes	
0 to 8	A	2.5Y 3/2	97	7.5YR 4/6	3			Clay	Pore linings present, manganese concentrations
8 to 14	Btg	2.5Y 4/1	90	7.5YR 5/8	10			Clay	Pore linings present, manganese concentrations

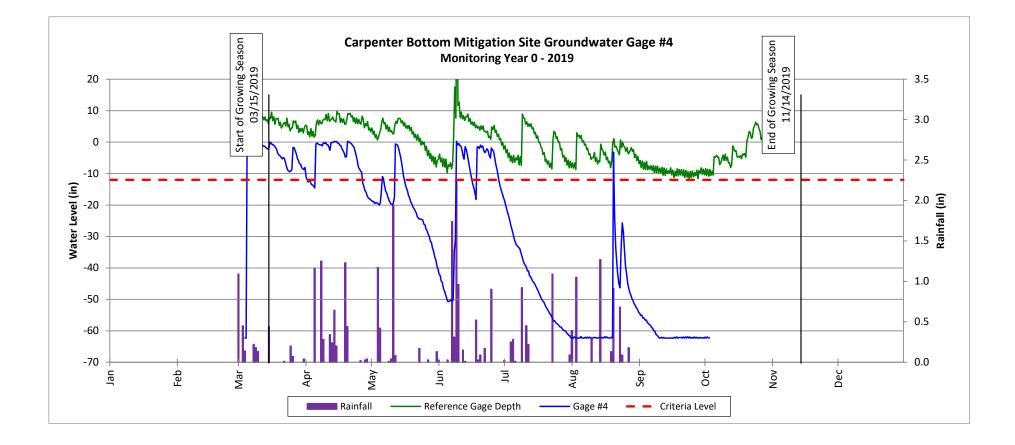
Soil Profile #2 /	Boring Location B2-F
-------------------	----------------------


Hydric Soil Indicator: F3a Series and Taxonomic Class: Worsham – Fine, mixed, active, thermic Typic Endoaquults

Horizon				Redox Features					
Depth (inches)	Horizon	Horizon Color % (moist)	Color (moist)	%	Туре	Location	Texture	Notes	
0 to 3	A	10YR 4/2	95	7.5YR 4/6	5			Clay Loam	Oxidized rhizospheres
3 to 12	Bt	7.5YR 4/4	70	10YR 4/3	30			Clay	Common manganese concentrations
12 to 16	Btg	2.5Y 4/1	90	7.5YR 5/8	10			Clay Loam	Common manganese concentrations

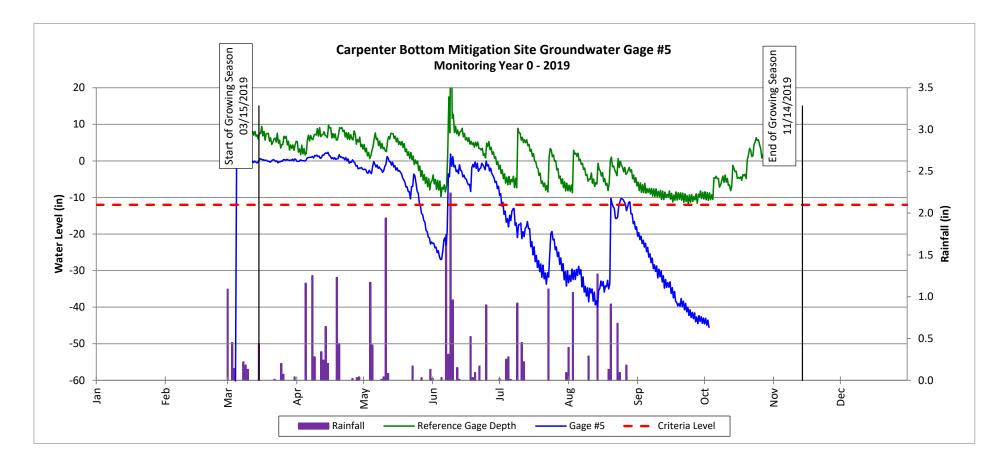

Groundwater Gage Plots

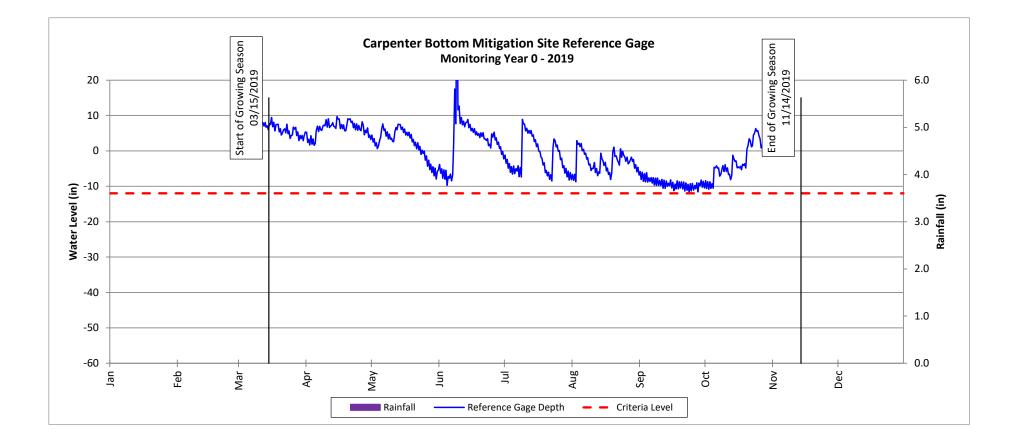

Carpenter Bottom Mitigation Site (DMS Project No. XXXXX) Monitoring Year 0 - 2019



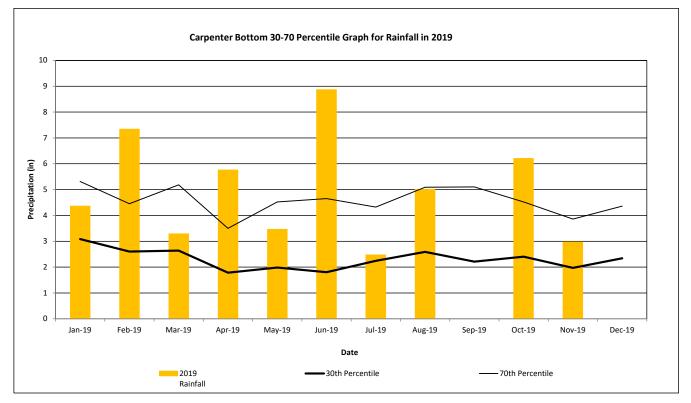
Groundwater Gage Plots

Carpenter Bottom Mitigation Site (DMS Project No. XXXXX) Monitoring Year 0 - 2019



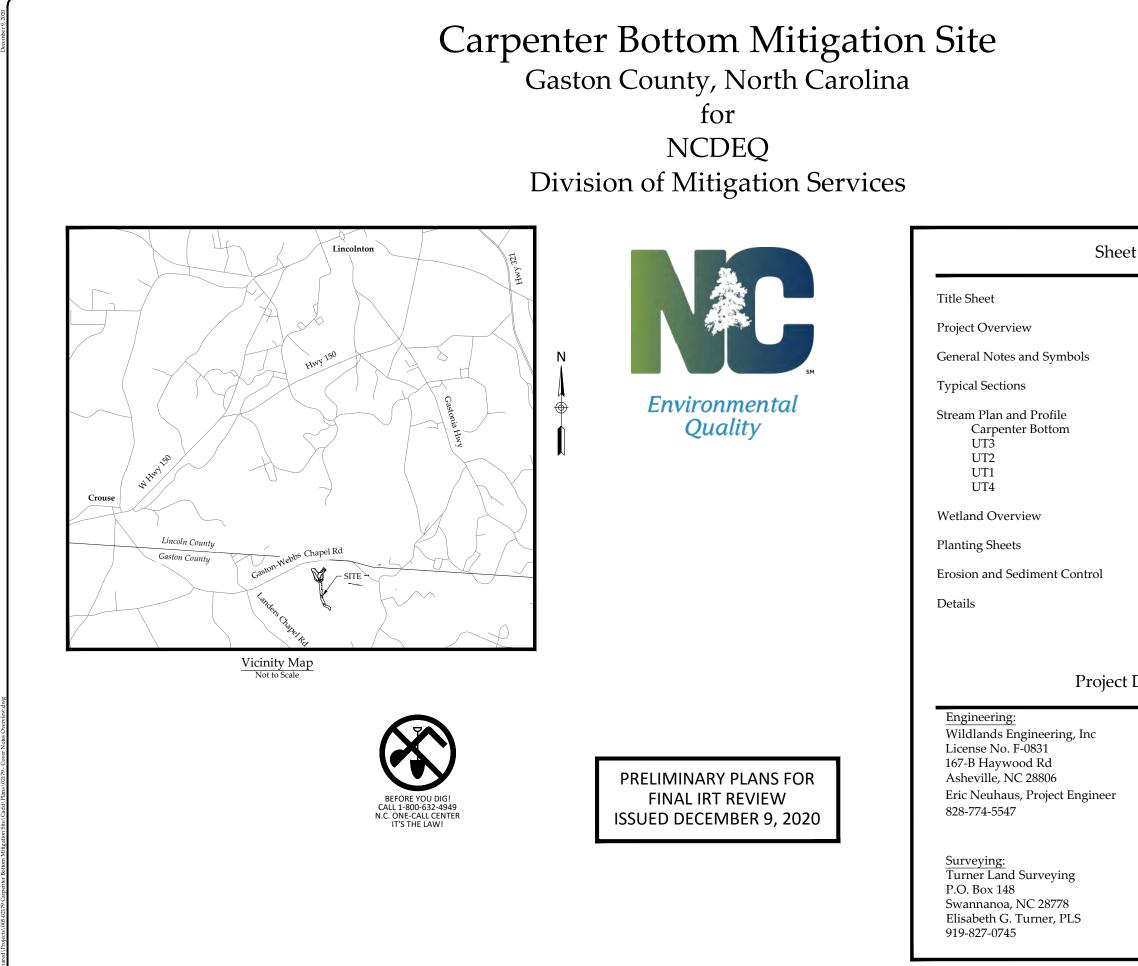


Groundwater Gage Plots


Carpenter Bottom Mitigation Site (DMS Project No. XXXXX) Monitoring Year 0 - 2019

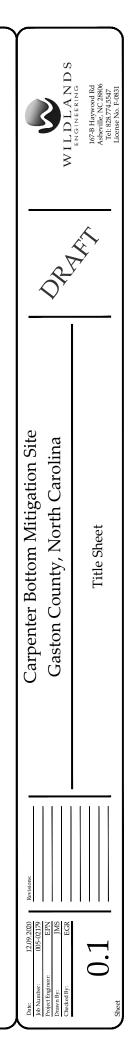
Monthly Rainfall Plot

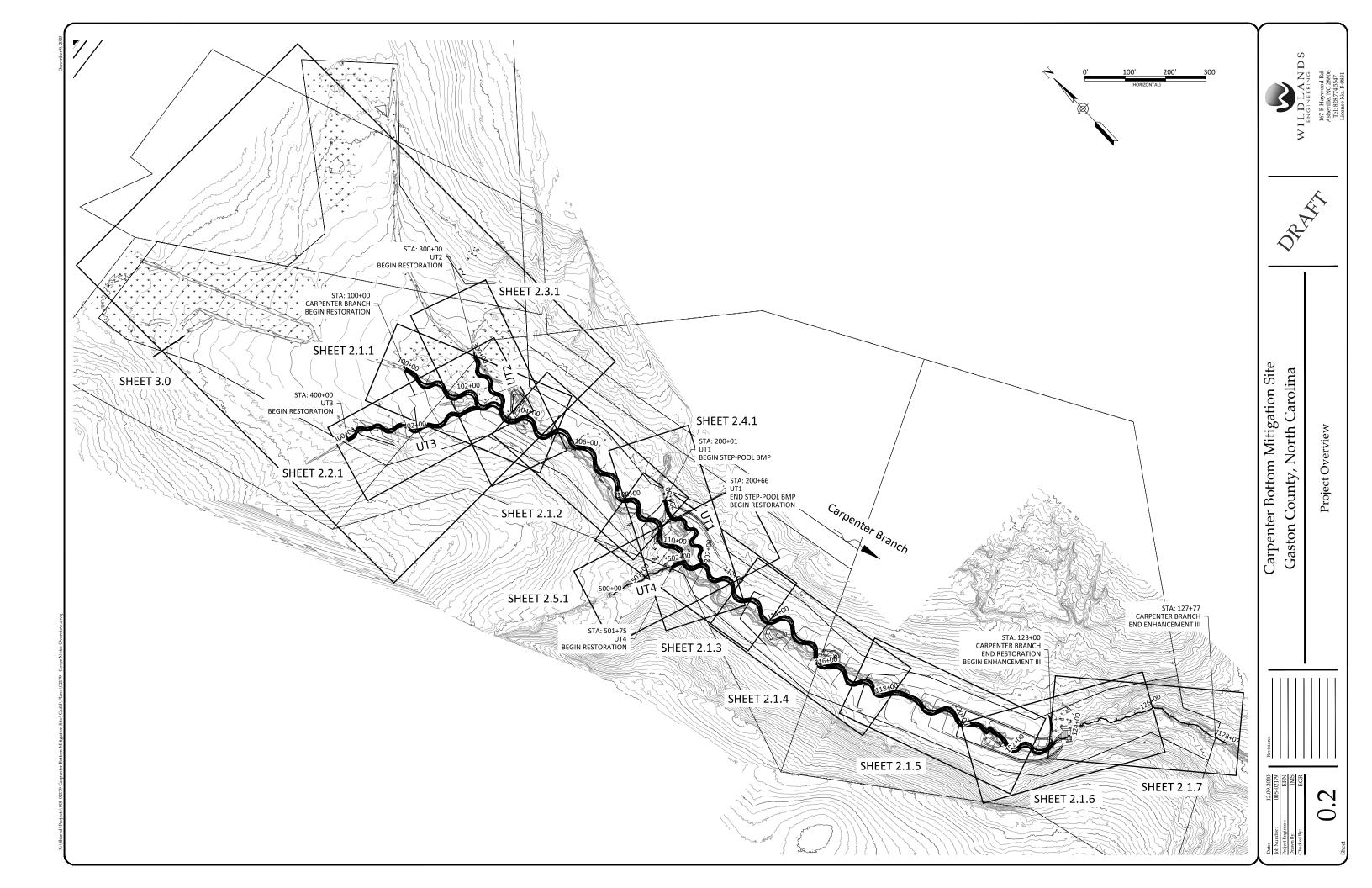
Carpenter Bottom Mitigation Site DMS Project No. 10090 **Pre-Construction - 2019 Year**

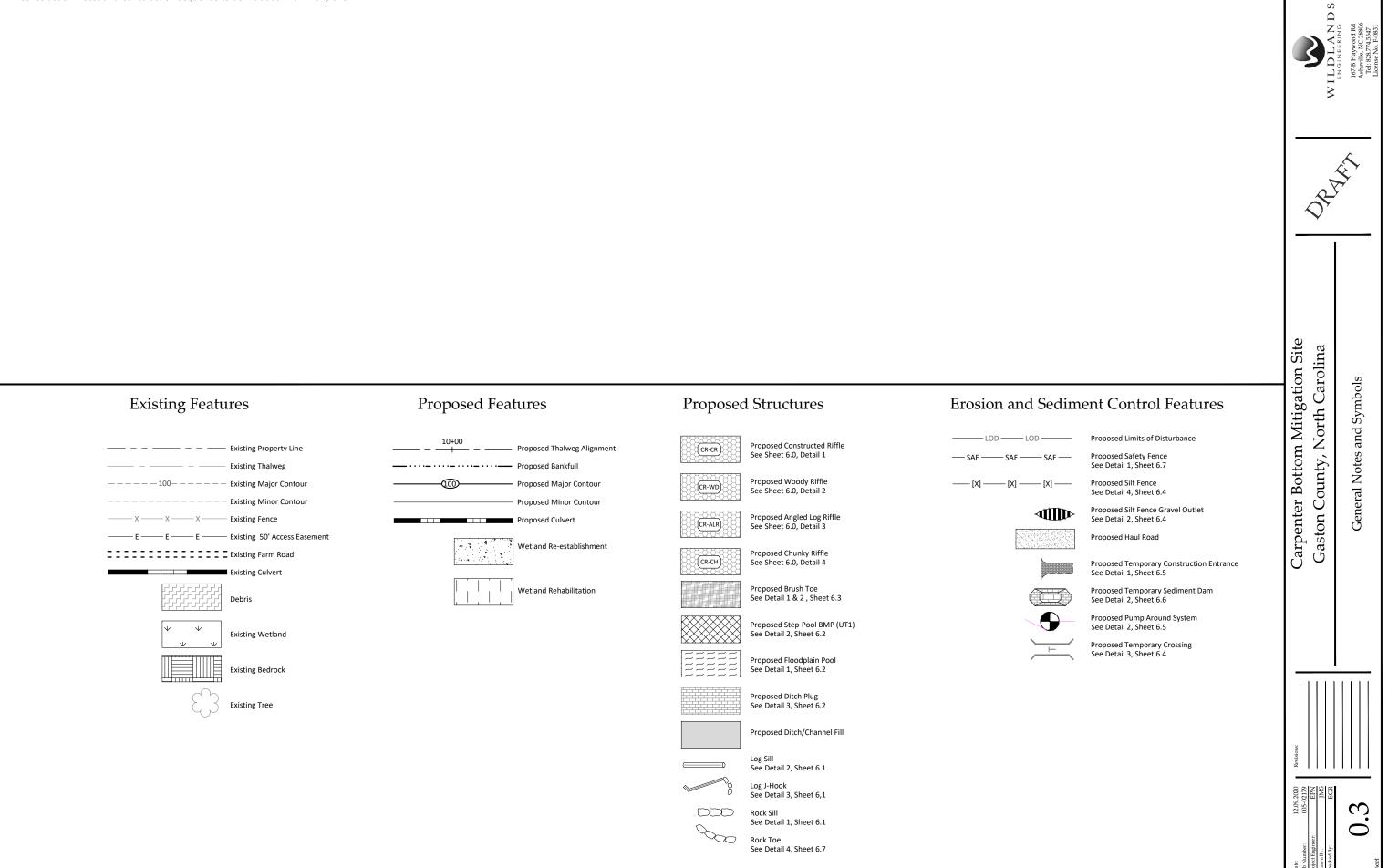


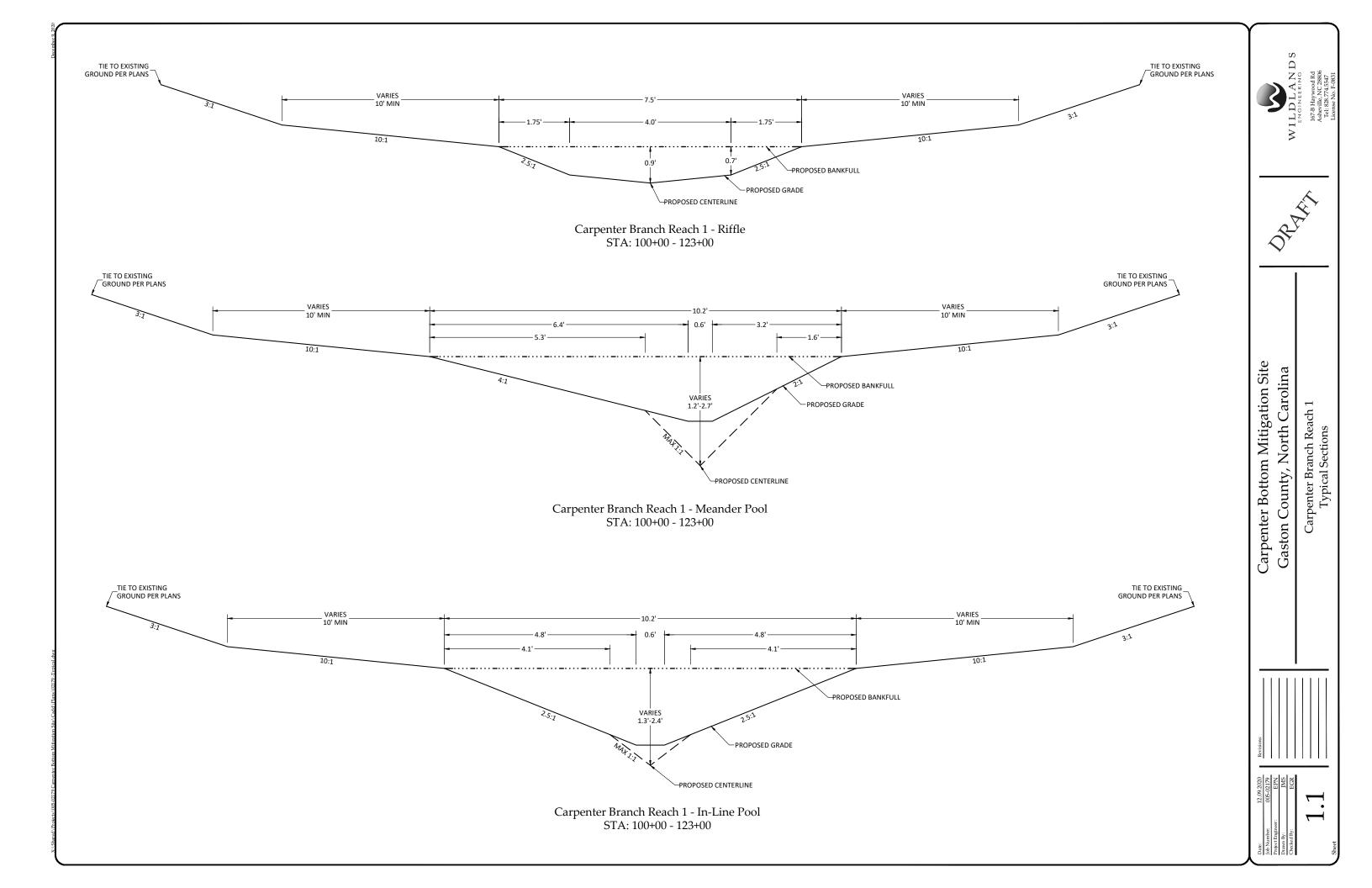
30th and 70th percentile rainfall data collected from Gaston County, NC WETS Table

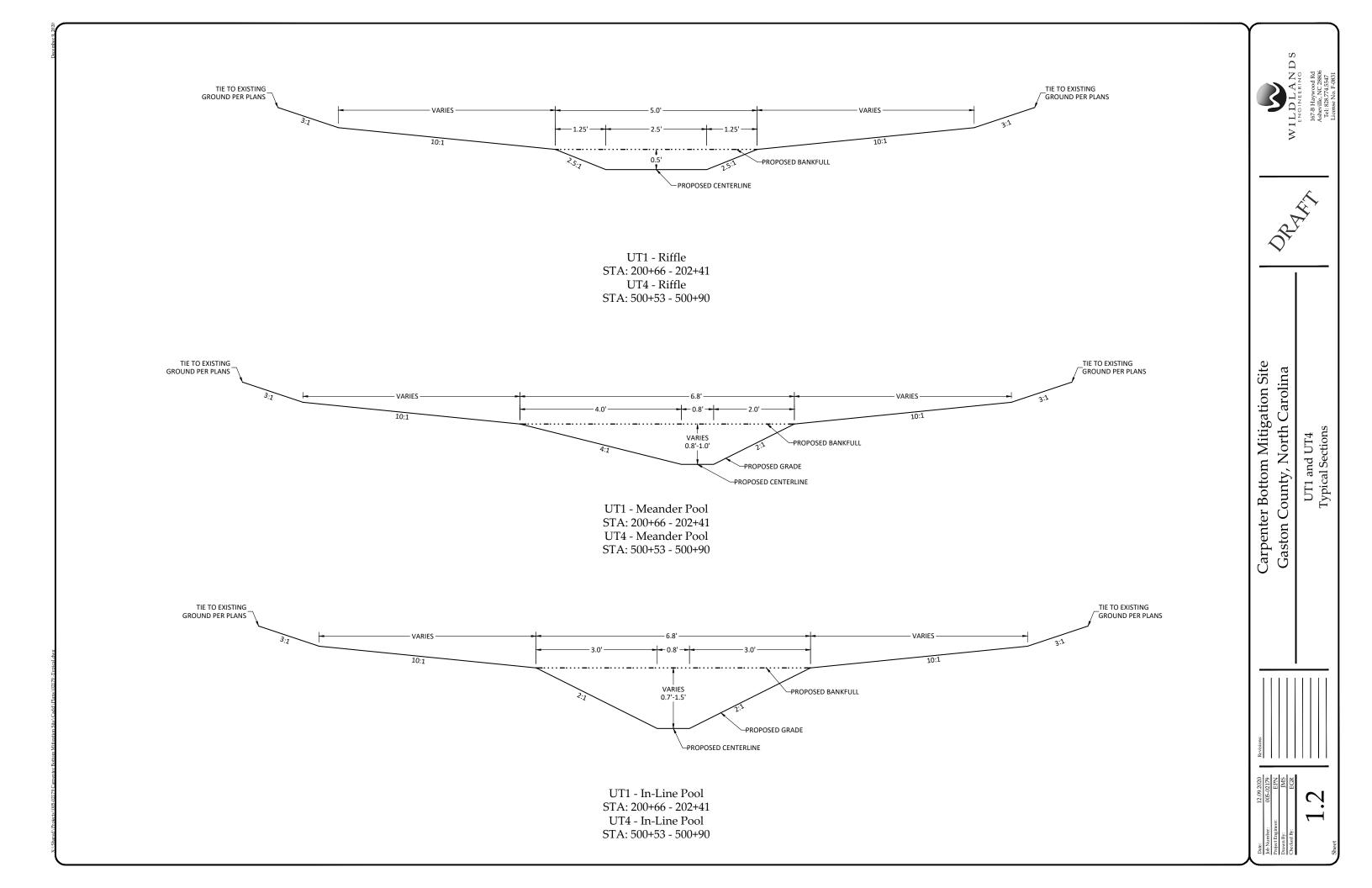
	30%	70%	2019
	Rainfall	Rainfall	Rainfall
Jan-19	3.08	5.31	4.36
Feb-19	2.60	4.45	7.34
Mar-19	2.64	5.18	3.29
Apr-19	1.78	3.50	5.76
May-19	1.98	4.52	3.46
Jun-19	1.80	4.65	8.87
Jul-19	2.24	4.32	2.47
Aug-19	2.59	5.09	5.01
Sep-19	2.21	5.10	0.00
Oct-19	2.40	4.52	6.2
Nov-19	1.97	3.86	2.97
Dec-19	2.34	4.36	5.57

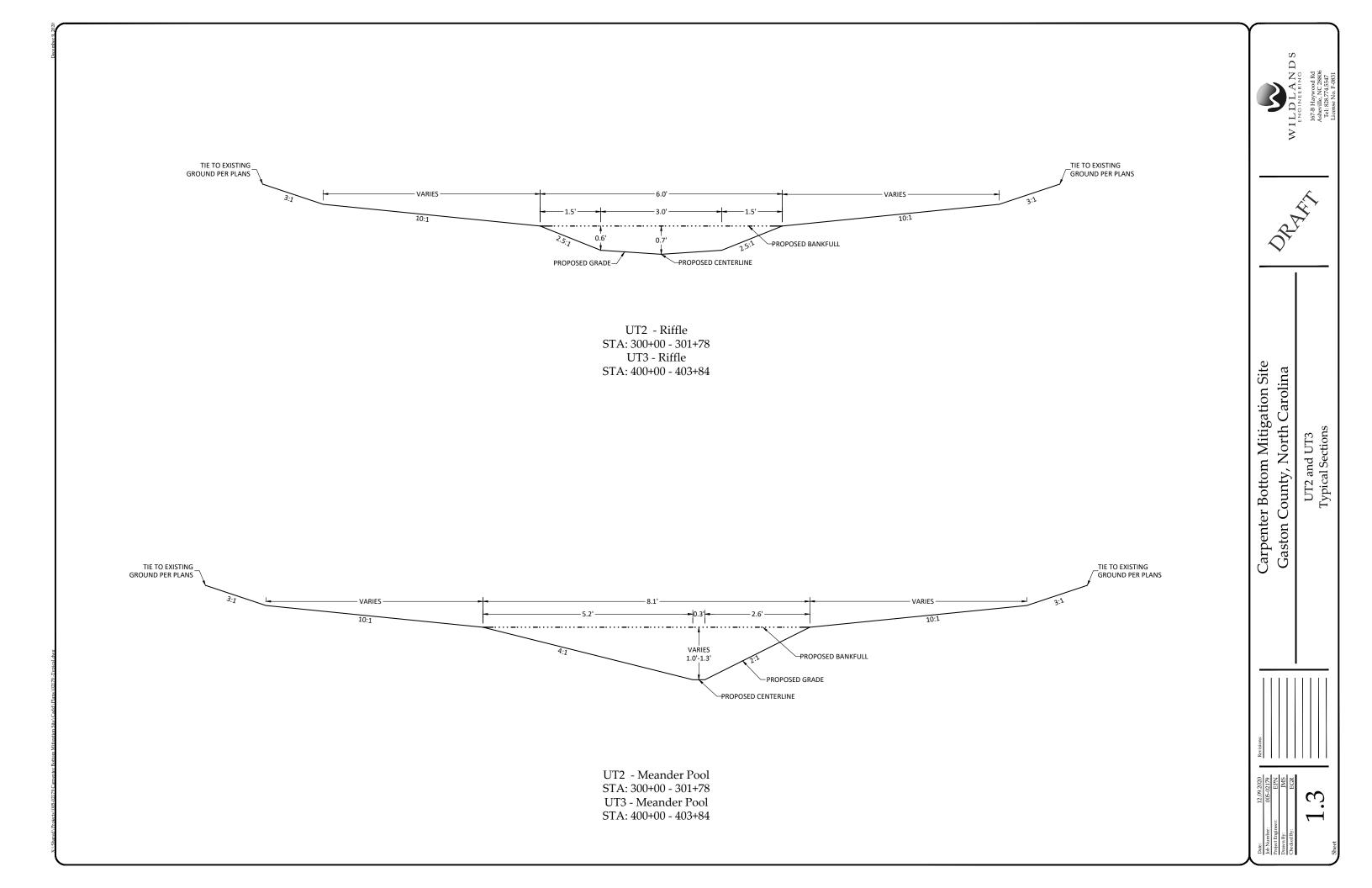

2019 Rainfall Data from Lincolnton 2W USC00314997 NOAA Station

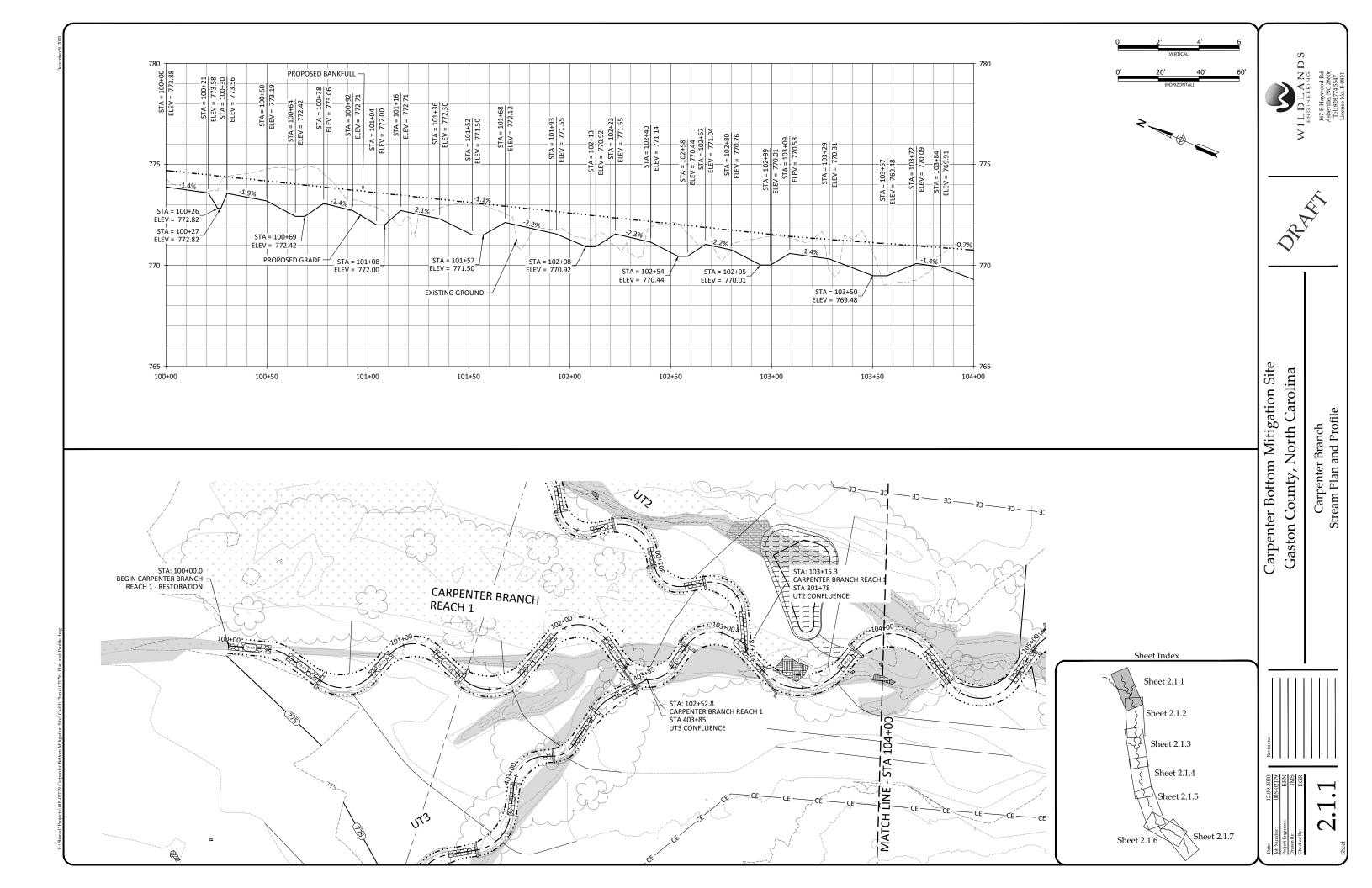

APPENDIX 8 Preliminary Design Plans

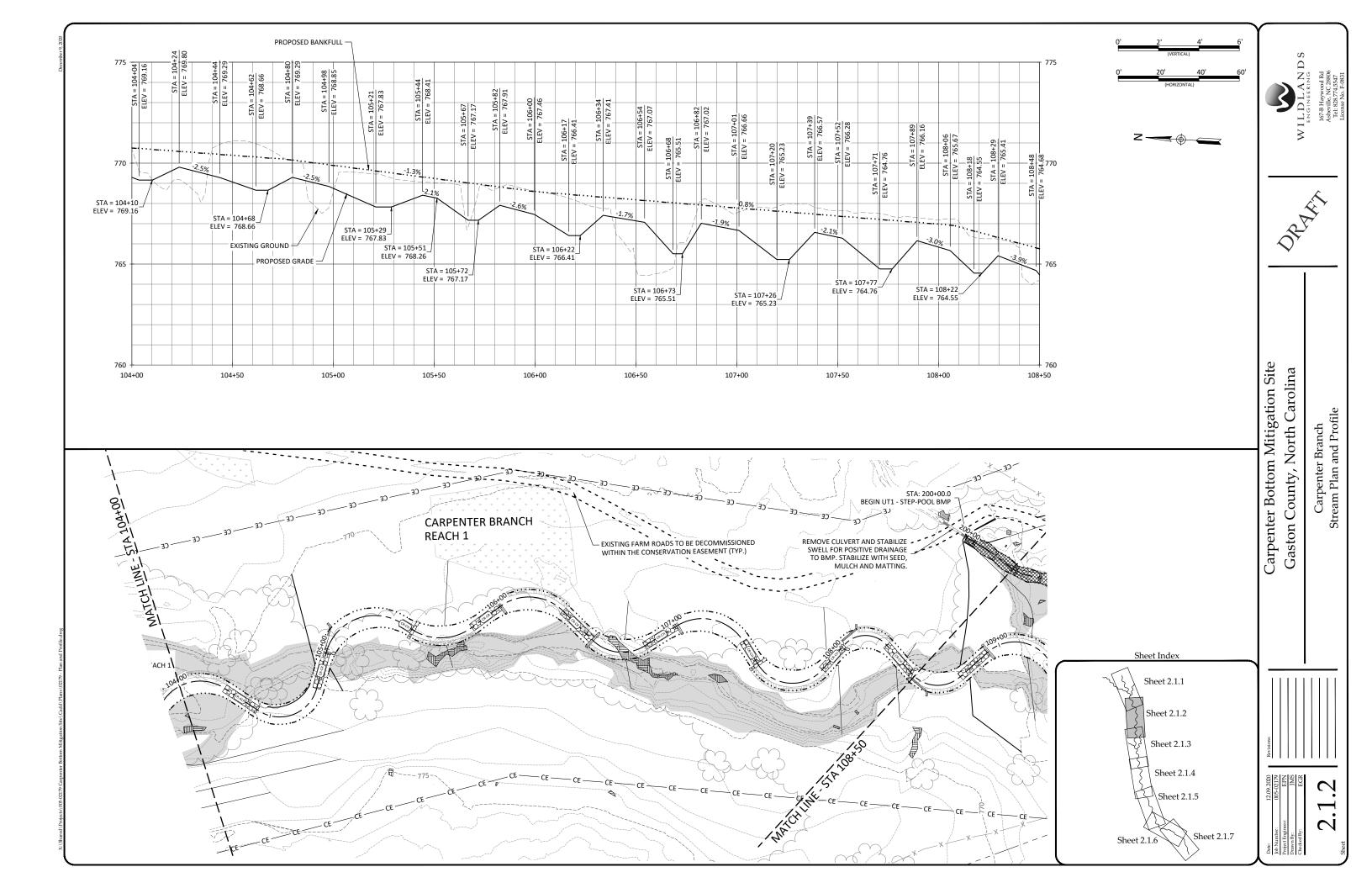

Sheet Index

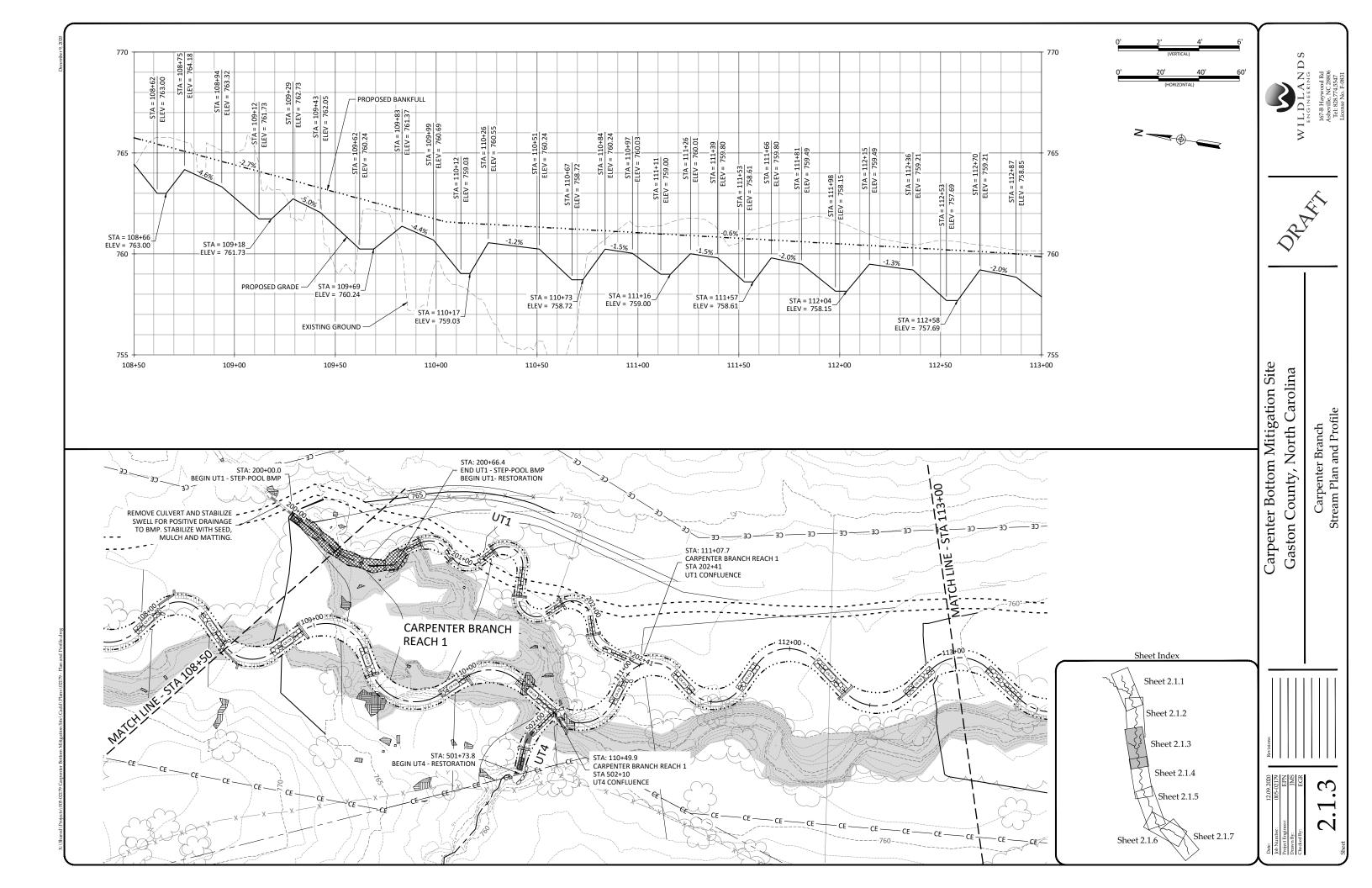

	0.1	
	0.2	
	0.3	
	1.1-1.3	
	2.1.1-2.1.7 2.2.1	
	2.3.1	
	2.4.1 2.5.1	
	2.5.1	
	3.0	
	4.0-4.4	
	Placeholder	
	6.0-6.9	
Dire	ectory	
	5	
	Owner: NCDEQ	
	Owner: NCDEQ Division of Mitigation Services	
	Owner: NCDEQ Division of Mitigation Services 5 Ravenscroft Drive, Ste 102	
	Owner: NCDEQ Division of Mitigation Services 5 Ravenscroft Drive, Ste 102 Asheville, NC 28801	
	Owner: NCDEQ Division of Mitigation Services 5 Ravenscroft Drive, Ste 102	
	Owner: NCDEQ Division of Mitigation Services 5 Ravenscroft Drive, Ste 102 Asheville, NC 28801 Paul Wiesner 828-273-1673	
	Owner: NCDEQ Division of Mitigation Services 5 Ravenscroft Drive, Ste 102 Asheville, NC 28801 Paul Wiesner	
	Owner: NCDEQ Division of Mitigation Services 5 Ravenscroft Drive, Ste 102 Asheville, NC 28801 Paul Wiesner 828-273-1673 DMS Project No. 100090	
	Owner: NCDEQ Division of Mitigation Services 5 Ravenscroft Drive, Ste 102 Asheville, NC 28801 Paul Wiesner 828-273-1673 DMS Project No. 100090 Catawba River Basin 03050102 USACE Action ID No. SAW-2018-02062	
	Owner: NCDEQ Division of Mitigation Services 5 Ravenscroft Drive, Ste 102 Asheville, NC 28801 Paul Wiesner 828-273-1673 DMS Project No. 100090 Catawba River Basin 03050102 USACE Action ID No. SAW-2018-02062 USACE PM Todd Tugwell	25
	Owner: NCDEQ Division of Mitigation Services 5 Ravenscroft Drive, Ste 102 Asheville, NC 28801 Paul Wiesner 828-273-1673 DMS Project No. 100090 Catawba River Basin 03050102 USACE Action ID No. SAW-2018-02062	05

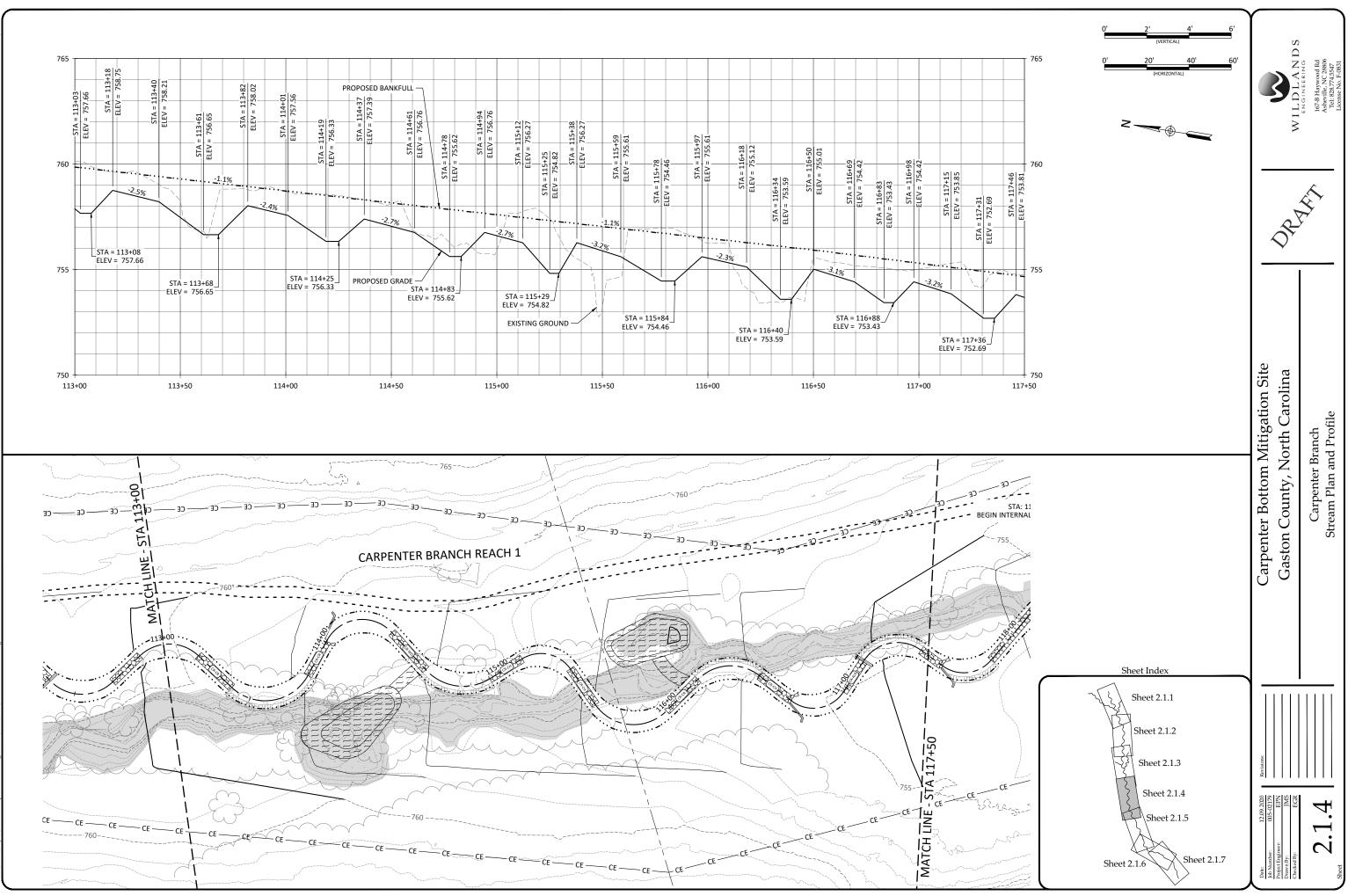


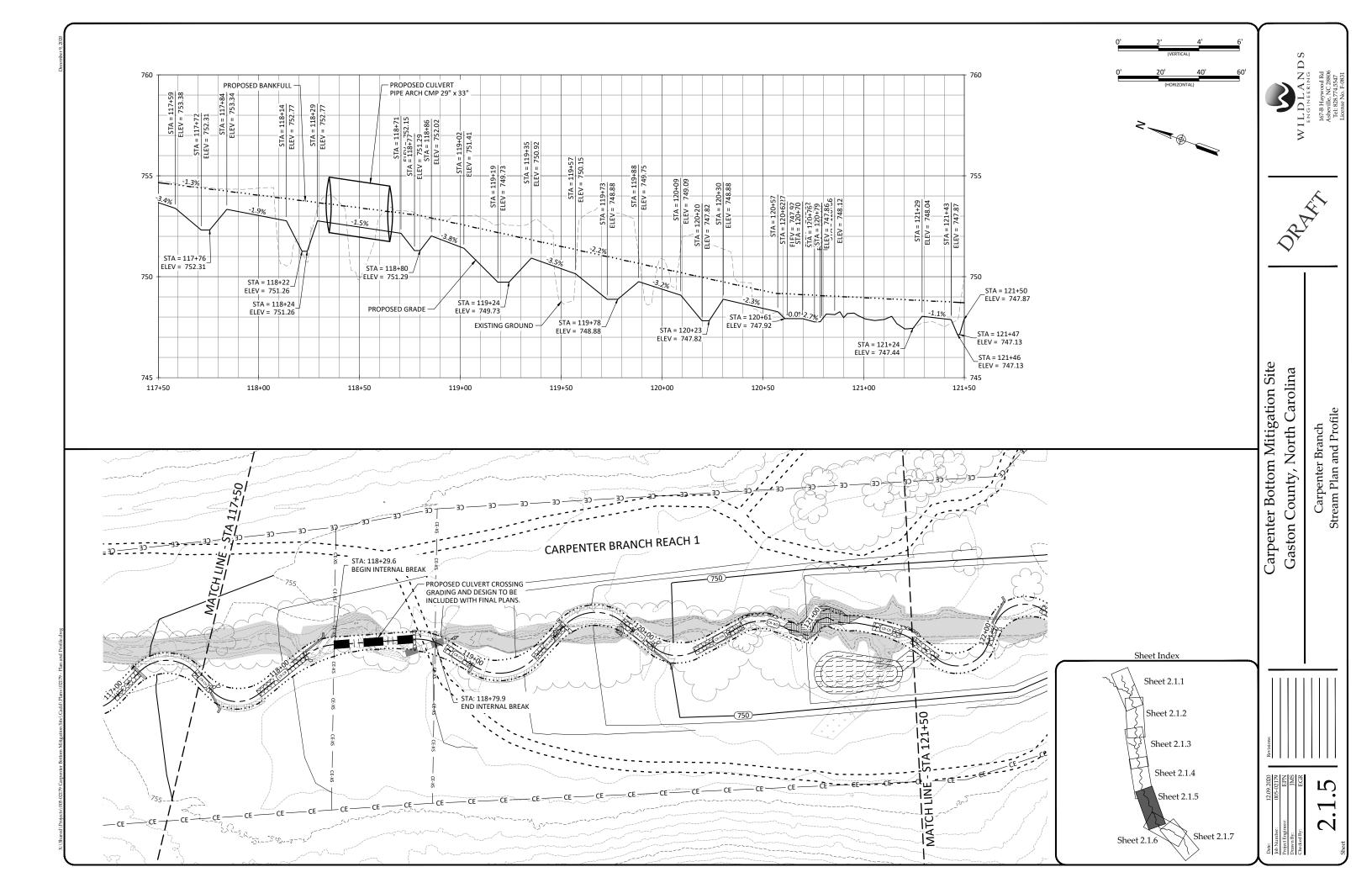


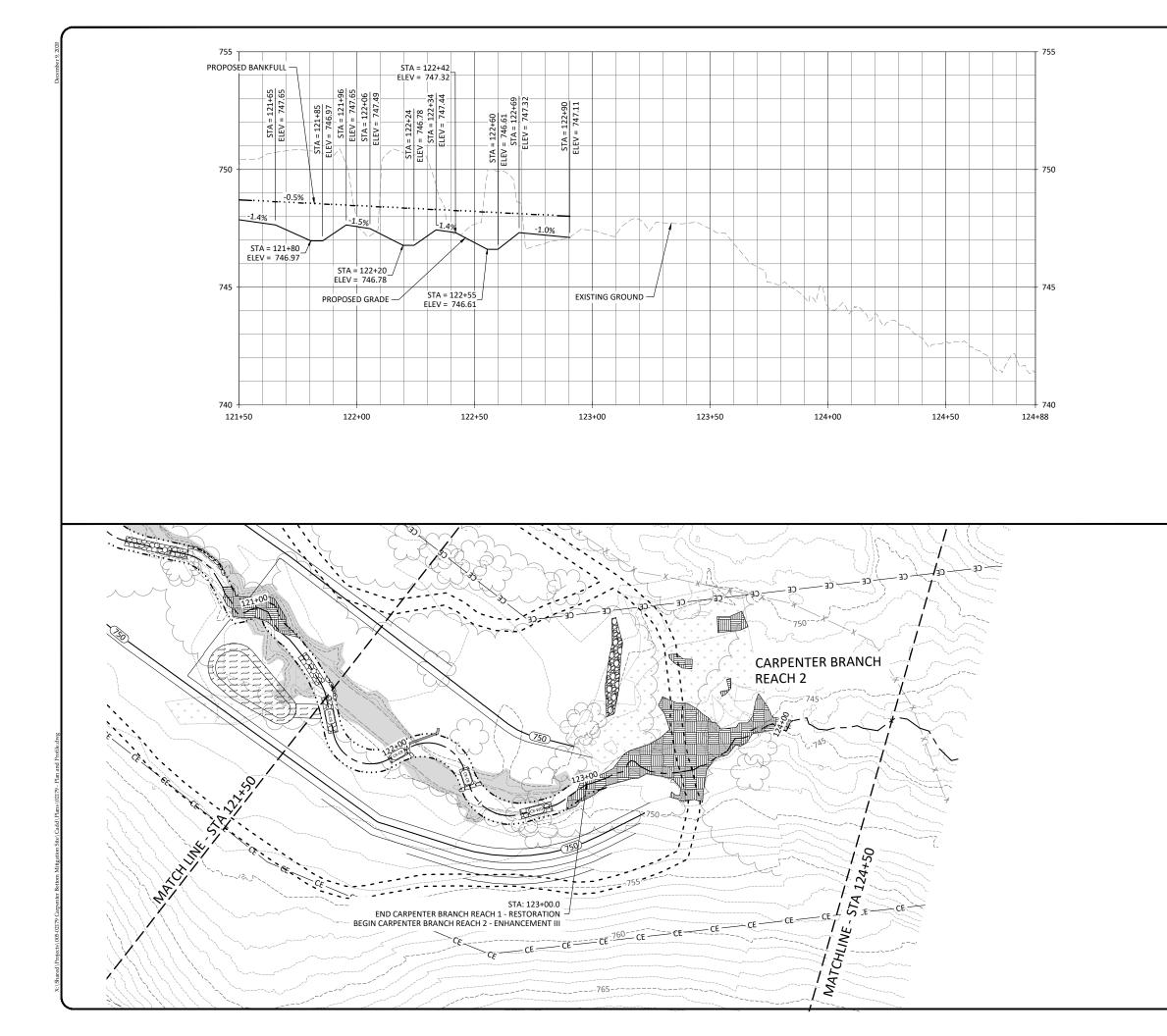

Construction Notes and Construction sequence to be included with final plans.	Construction Notes and Construction Seq	uence to be included with final plans.
---	--	--

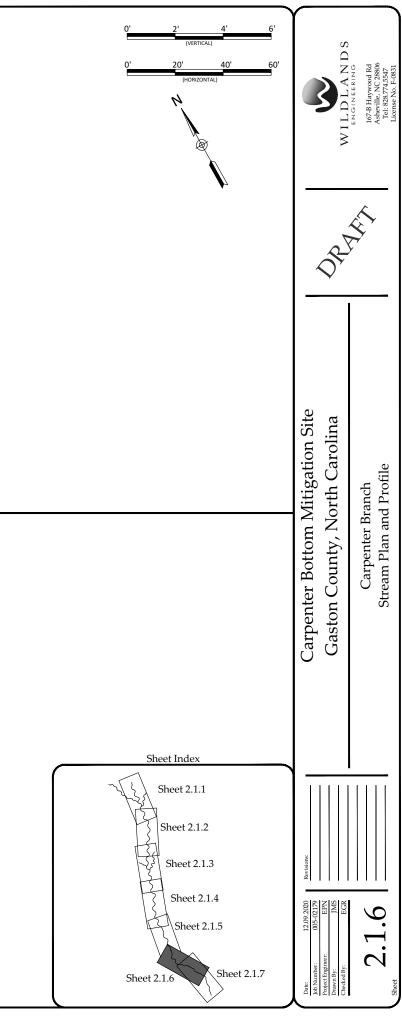


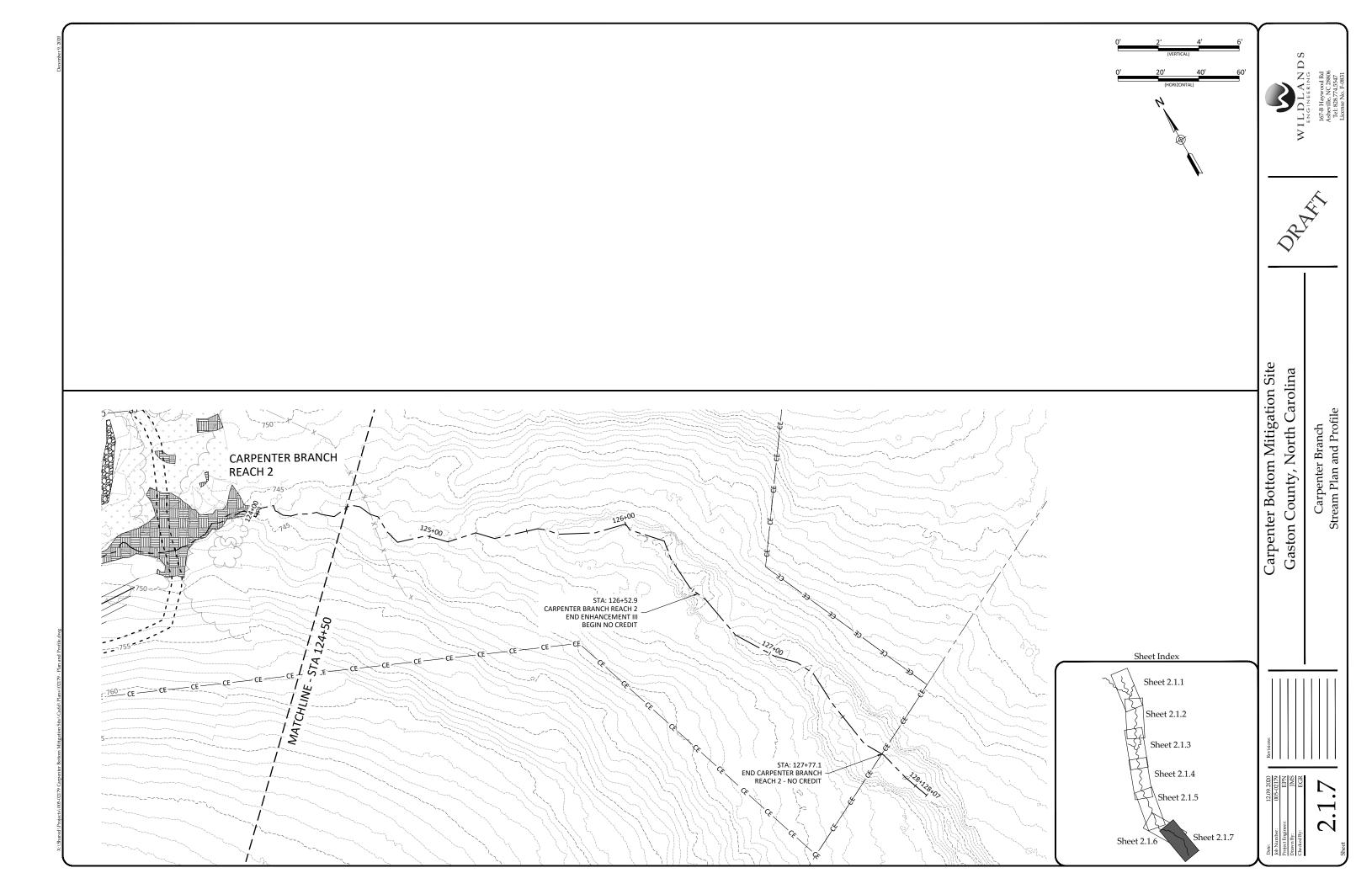


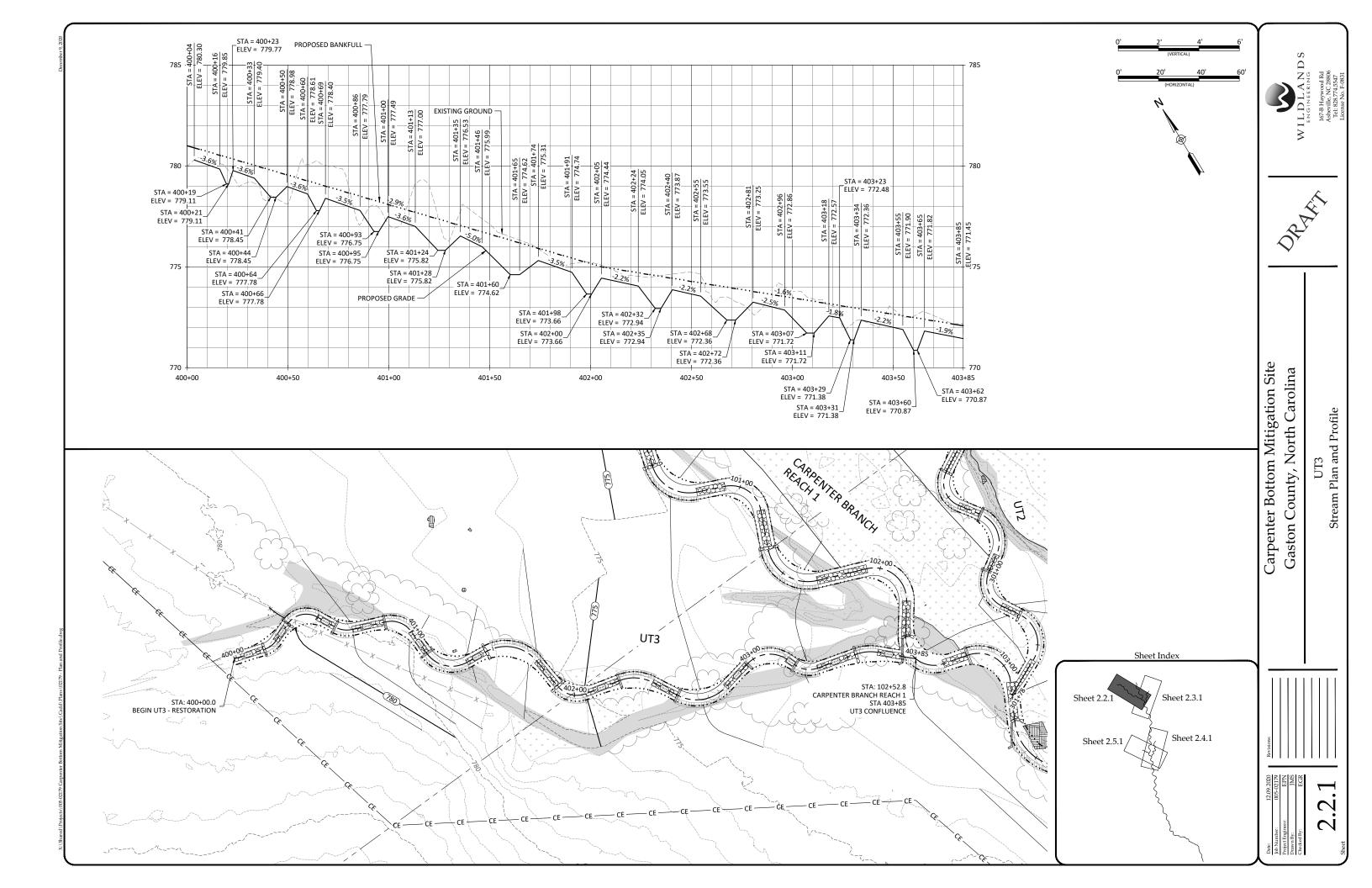


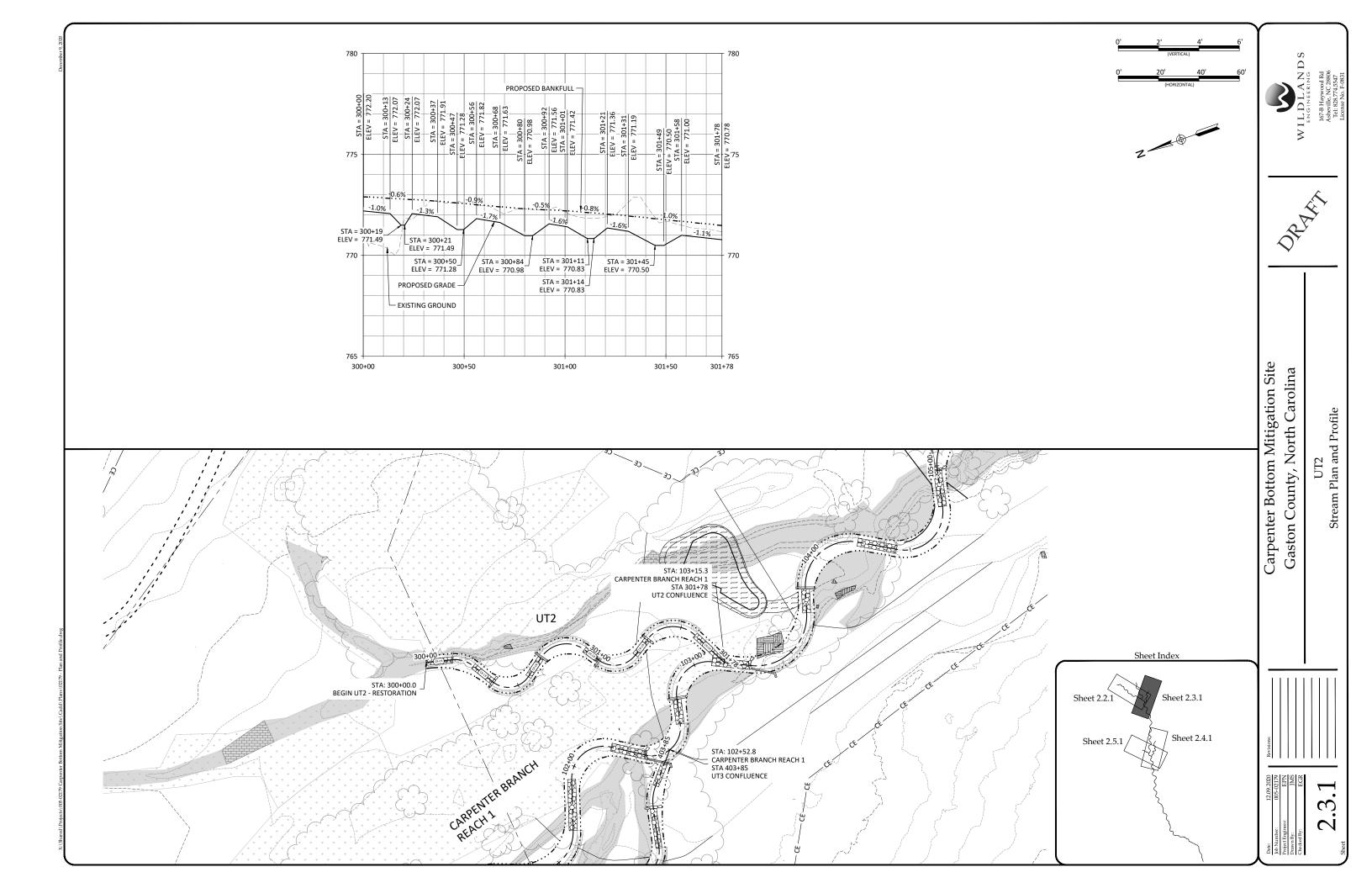


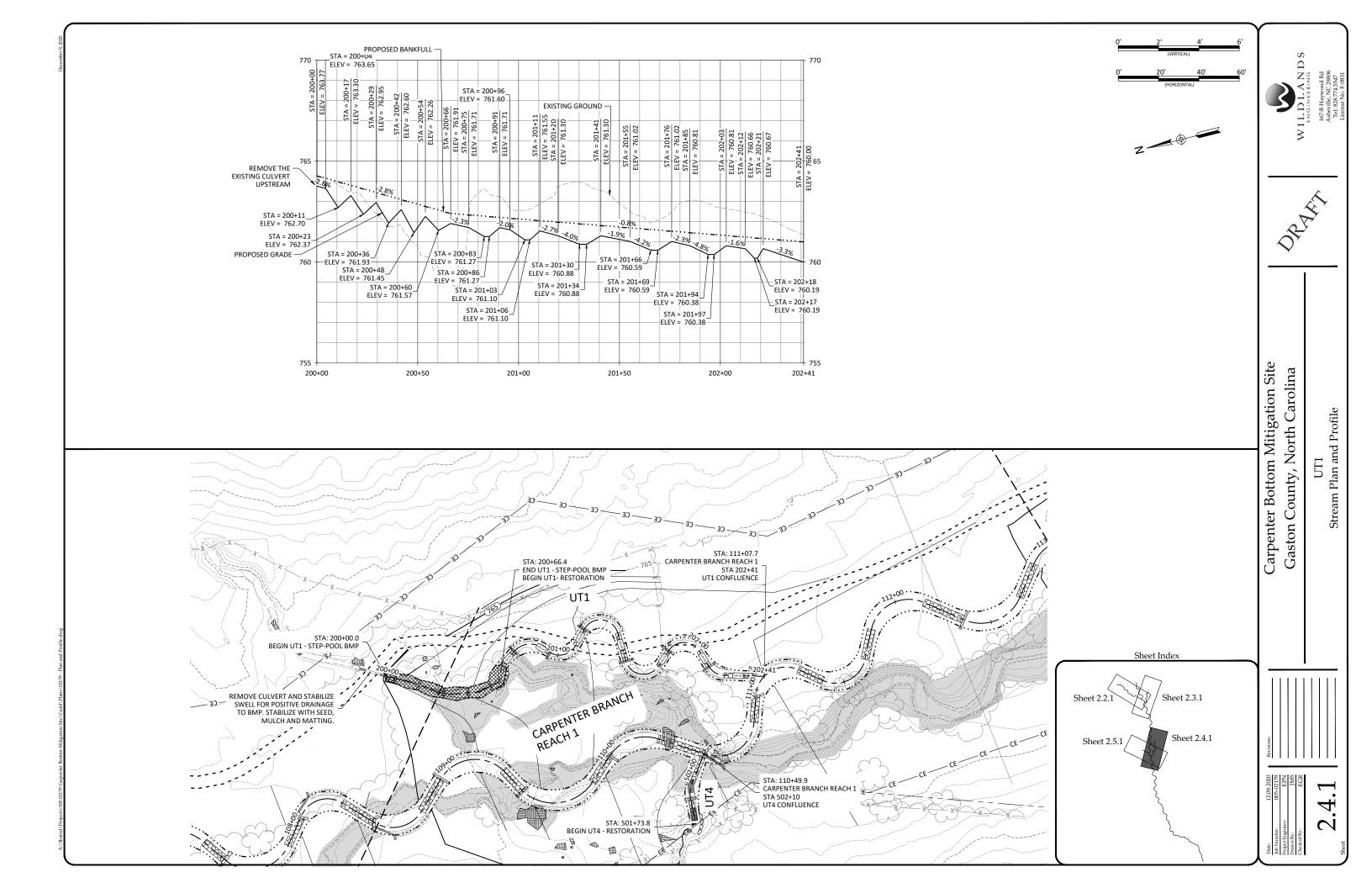


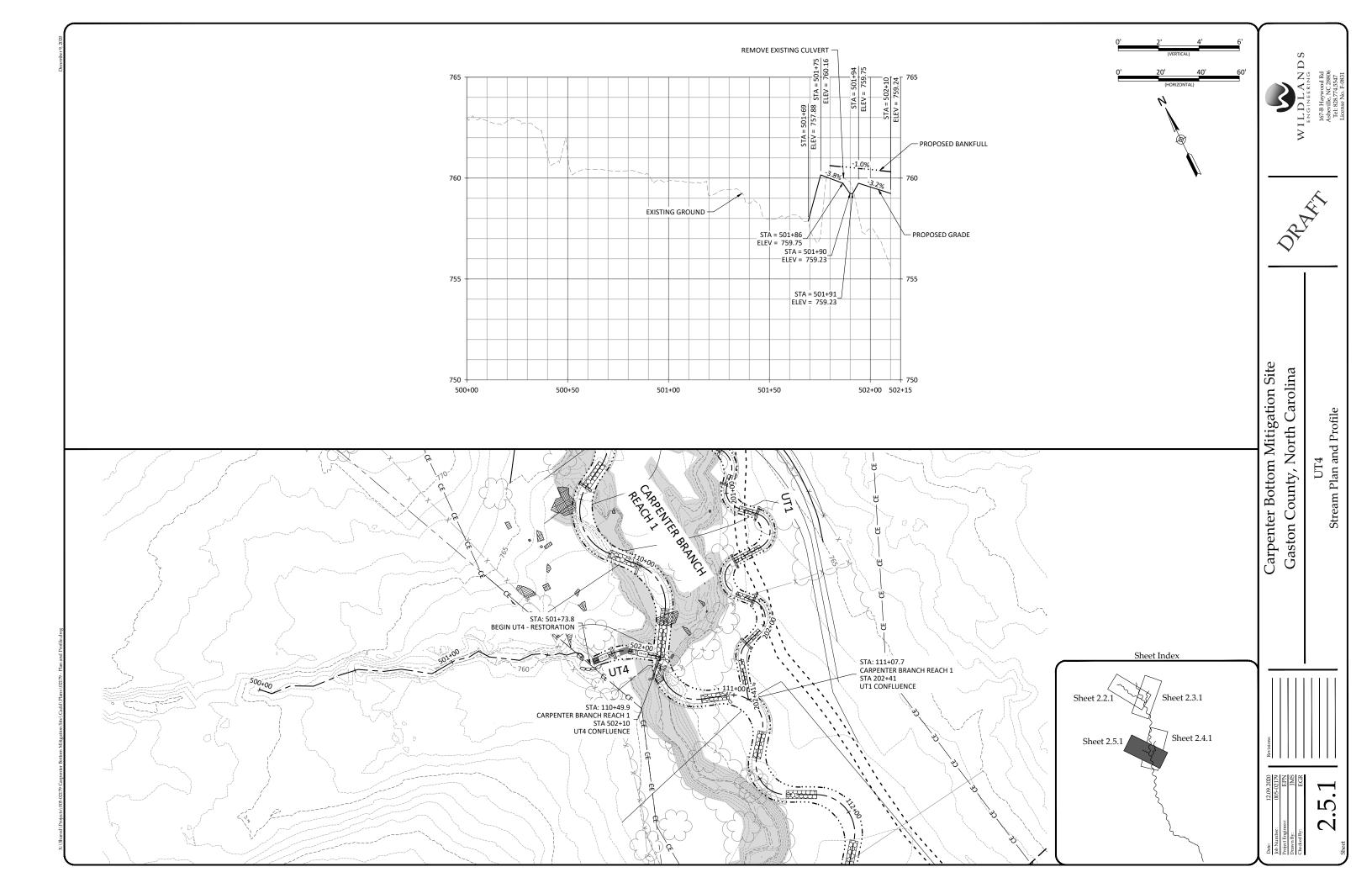


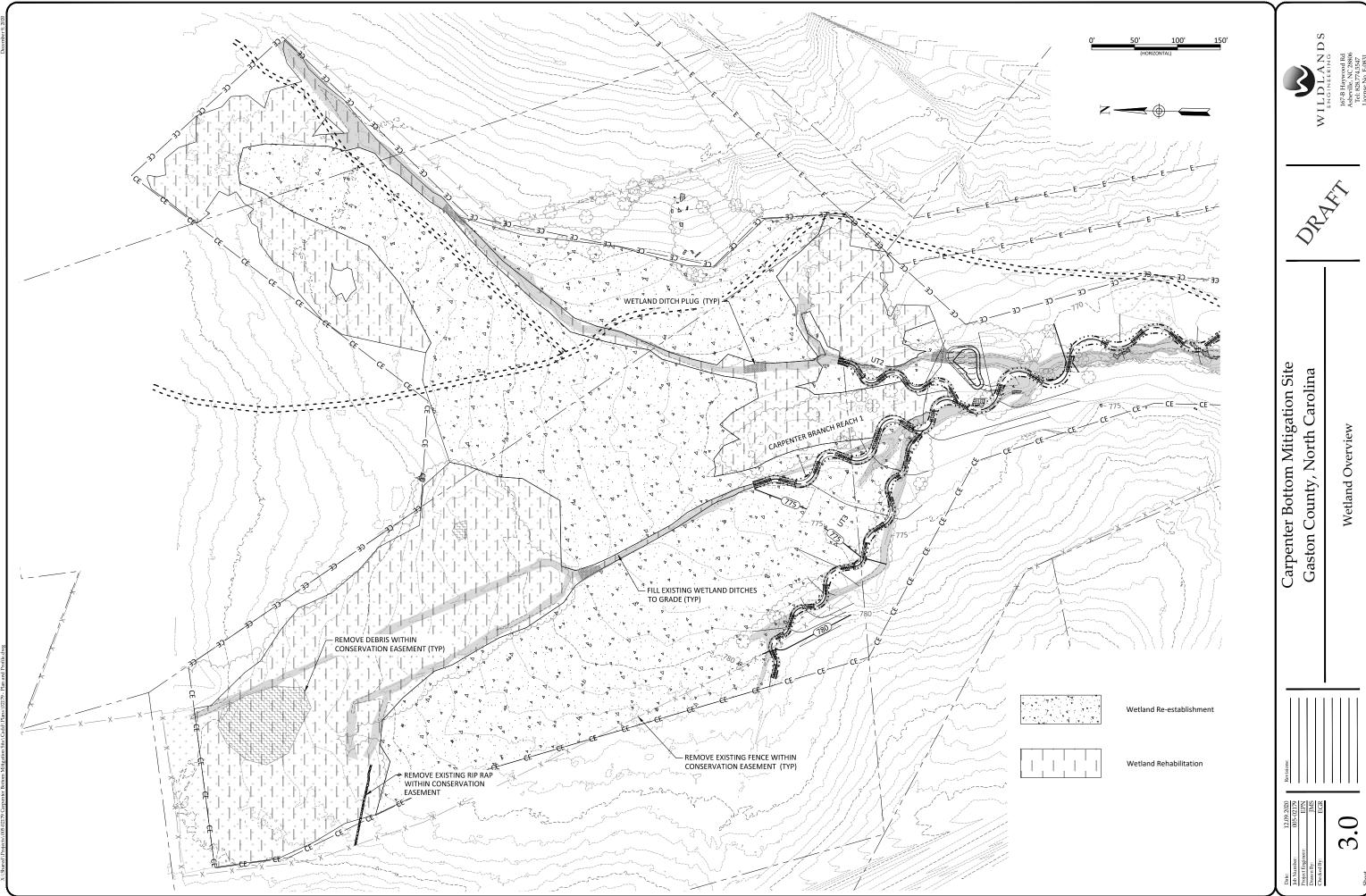












Open Area Buffer Planting

		Open	Buffer Plant	ing Zone Tree	s				
Bare Root									
Species	Common Name	Max Spacing	Indiv. Spacing	Min. Caliper Size	Stratum	Wetland Indicator	# of Stems		
Acer negundo	Boxelder	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	FAC	10%		
Platanus occidentalis	Sycamore	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	FACW	15%		
Betula nigra	River Birch	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	FACW	15%		
Liriodendron tulipifera	Tulip Poplar	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	FACU	10%		
Quercus Phellos	Willow Oak	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	FAC	10%		
Fagus grandifolia	American Beech	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	FACU	10%		
Diospyros virginiana	Persimmon	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	FAC	5%		
Populus deltoides	Eastern Cottonwood	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	FAC	10%		
						Total	90%		
			Alterna	tes					

Nyssa sylvatica	Black Gum	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	FAC	0%
Acer saccharinum	Silver Maple	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	FACW	0%
Ulmus rubra	Slippery Elm	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	FAC	0%
	C	pen Buffer P	lanting Zone	Small Trees	/ Shrubs		

	L L	pen buner r	anting 2016	s Sinan mees	/ 5111055		
			Bare Ro	oot			
Species	Common Name	Max Spacing	Indiv. Spacing	Min. Caliper Size	Stratum	Wetland Indicator	# of Stems
Alnus serrulata	Tag Alder	12 ft.	6-12 ft.	0.25"-1.0"	Sub-Canopy	OBL	2%
Hamamelis virginiana	Witch Hazel	12 ft.	6-12 ft.	0.25"-1.0"	Sub-Canopy	FACU	2%
Cornus florida	Flowering Dogwood	12 ft.	6-12 ft.	0.25"-1.0"	Sub-Canopy	FACU	2%
Lindera benzoin	Spicebush	12 ft.	6-12 ft.	0.25"-1.0"	Shrub	FAC	2%
Amelanchier arborea	Serviceberry	12 ft.	6-12 ft.	0.25"-1.0"	Shrub	FAC	2%
						Total	10%
			Alterna	tes			
Asima triloba	Pawpaw	12 ft.	6-12 ft.	0.25"-1.0"	Sub-Canopy	FAC	0%
Carpinus caroliniana	American Hornbeam	12 ft.	6-12 ft.	0.25"-1.0"	Sub-Canopy	FAC	0%

Notes: Transplants from on-site to be used at Designer's discretion for streambank and floodplain planting.

Percentages of each species may be varied at Designer's discretion but shall not exceed 20% per each species. Designer may substitute container plantings or other plantings for bare roots.

		V
Partially Vegetated Buffer Area Planting	P	D

 \triangleright D \triangleright

			-							
		Partial	y Buffer Plar	nting Zone Tr	ees					
	Bare Root									
Species	Common Name	Max Spacing	Indiv. Spacing	Min. Caliper Size	Stratum	Wetland Indicator	# of Stems			
Carpinus caroliniana	American Hornbeam	12 ft.	6-12 ft.	0.25"-1.0"	Sub-Canopy	FAC	10%			
Euonymus americana	Strawberry Bush	12 ft.	6-12 ft.	0.25"-1.0"	Shrub	FAC	10%			
Lindera benzoin	Spicebush	12 ft.	6-12 ft.	0.25"-1.0"	Sub-Canopy	FAC	10%			
Fagus grandifolia	American Beech	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	FACU	10%			
Ulmus rubra	Slippery Elm	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	FAC	10%			
Hamamelis virginiana	Witchhazel	12 ft.	6-12 ft.	0.25"-1.0"	Sub-Canopy	FACU	10%			
Calycanthus floridus	Sweetshrub	12 ft.	6-12 ft.	0.25"-1.0"	Shrub	FACU	10%			
Cornus florida	Flowering Dogwood	12 ft.	6-12 ft.	0.25"-1.0"	Sub-Canopy	FACU	10%			
Asima triloba	Pawpaw	12 ft.	6-12 ft.	0.25"-1.0"	Sub-Canopy	FAC	10%			
Quercus rubra	Northern Red Oak	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	FACU	10%			
						Total	100%			

		-		D1		´ ´	
		V	Vetland	Planting	g	1/ 1	<u> </u>
		We		g Zone Trees			
			Bare Ro	oot			
Species	Common Name	Max Spacing	Indiv. Spacing	Min. Caliper Size	Stratum	Wetland Indicator	# of Stems
Platanus occidentalis	Sycamore	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	FACW	15%
Quercus pagota	Cherrybark Oak	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	FACW	15%
Quercus phellos	Willow Oak	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	FAC	10%
Ulmus americana	American Elm	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	FACW	10%
Nyssa sylvatica	Black Gum	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	FAC	5%
Quercus michauxii	Swamp Chestnut Oak	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	FACW	10%
Acer negundo	Boxelder	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	FAC	5%
Celtis laevigata	Sugarberry	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	FACW	5%
Betula nigra	River Birch	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	FACW	10%
	•			•		Total	85%
			Alterna	ite			
Acer saccharinum	Silver Maple	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	FACW	0%
		Wetland Pl	anting Zone	Small Trees/S	hrubs		
			Bare Ro	oot			
Species	Common Name	Max Spacing	Indiv. Spacing	Min. Caliper Size	Stratum	Wetland Indicator	# of Stems
Alnus serrulata	Tag Alder	12 ft.	6-12 ft.	0.25"-1.0"	Sub-Canopy	OBL	5%
Lindera benzoin	Spicebush	12 ft.	6-12 ft.	0.25"-1.0"	Shrub	FAC	3%
Cephalanthus occidentalis	Buttonbush	12 ft.	6-12 ft.	0.25"-1.0"	Sub-Canopy	OBL	5%
Sambucus canadensis	Elderberry	12 ft.	6-12 ft.	0.25"-1.0"	Shrub	FAC	2%
						Total	15%
			Alterna	ite			
Alnus serrulata	Tag Alder	12 ft.	6-12 ft.	Tubling	Sub-Canopy	OBL	5%

<u>Notes:</u> Transplants from on-site to be used at Designer's discretion for streambank and floodplain planting. Percentages of each species may be varied at Designer's discretion but shall not exceed 20% per each species. Designer may substitute container plantings or other plantings for bare roots.

Partially	Vegetated	Watland	Dianting
Partially	vegetated	l vvetlanc	i Planting

		Partially Ve	egetated We	tland Plantin	g Zone		
Bare Root							
Species	Common Name	Max Spacing	Indiv. Spacing	Min. Caliper Size	Stratum	Wetland Indicator	# of Stems
Platanus occidentalis	Sycamore	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	FACW	15%
Nyssa sylvatica	Black Gum	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	FAC	15%
Alnus serrulata	Tag Alder	12 ft.	6-12 ft.	0.25"-1.0"	Sub-Canopy	OBL	15%
Acer negundo	Boxelder	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	FAC	15%
Celtis laevigata	Sugarberry	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	FACW	15%
Cephalanthus occidentalis	Buttonbush	12 ft.	6-12 ft.	0.25"-1.0"	Sub-Canopy	OBL	15%
Quercus michauxii	Swamp Chestnut Oak	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	FACW	10%

APPROVED DATE	ТҮРЕ	PLANTI RATE (lbs,
	Rye Grain (Secale Cereale)	120
Jan 1 – May 1	Ladino clover (Trifolium Repens)	5
	Crimson Clover (Trifolium incarnatum)	5
	Straw Mulch	4,000
	German Millet (Setaria italica)	40
May 1 – Aug 15	Ladino clover (Trifolium Repens)	5
iviay 1 – Aug 15	Crimson Clover (Trifolium incarnatum)	5
	Straw Mulch	4,000
	Rye Grain (Secale Cereale)	120
Aug 15 – Dec 31	Ladino clover (Trifolium Repens)	5
Aug 15 - Dec 31	Crimson Clover (Trifolium incarnatum)	5
	Straw Mulch	4,000

included in the specification documents

		L	ive Stakes			
Species	Common Name	Max Spacing	Indiv. Spacing	Min. Size	Stratum	% of Stems
Salix nigra	Black Willow	8 ft.	6-8 ft.	0.5"-1.5" cal.	Shrub	25%
Cornus amomum	Silky Dogwood	8 ft.	6-8 ft.	0.5"-1.5" cal.	Shrub	20%
Salix sericea	Silky Willow	8 ft.	6-8 ft.	0.5"-1.5" cal.	Shrub	25%
Cephalathus occidentalis	Buttonbush	8 ft.	6-8 ft.	0.5"-1.5" cal.	Shrub	15%
Sambucus canadensis	Elderberry	8 ft.	6-8 ft.	0.5"-1.5" cal.	Shrub	15%
					Total	100%
		Herb	baceous Plugs			
Juncus effusus	Common Rush	5 ft.	3-5 ft.	1.0"- 2.0" plug	Herb	40%
Carex crinita	Fringed Sedge	5 ft.	3-5 ft.	1.0"- 2.0" plug	Herb	10%
Carex lurida	Lurid Sedge	5 ft.	3-5 ft.	1.0"- 2.0" plug	Herb	20%
Carex lupulina	Hop Sedge	5 ft.	3-5 ft.	1.0"-2.0" plug	Herb	15%
Scirpus cyperinus	Woolgrass	5 ft	3-5 ft.	1.0"-2.0" plug	Herb	15%
					Total	100%

Note: See live staking and herbaceous plugs detail.

11 11

	Ripari	an Seeding - Open Canopy	/					
Pure Live Seed (20 lbs/ acre)								
Approved Date	Species Name	Common Name	Stratum	Wetland Indicator	Density (Ibs/acre			
All Year	Schizachyrium scoparium	Little Bluestem	Herb	FACU	4.0			
All Year	Panicum virgatum	Switchgrass	Herb	FAC	2.0			
All Year	Panicum rigidulum	Redtop Panicgrass	Herb	FACW	1.0			
All Year	Rudbeckia hirta	Blackeyed Susan	Herb	FACU	1.0			
All Year	Coreopsis lanceolata	Lanceleaf Coreopsis	Herb	FACU	1.0			
All Year	Carex vulpinoidea	Fox Sedge	Herb	OBL	1.0			
All Year	Panicum clandestinum	Deertongue	Herb	FAC	2.0			
All Year	Elymus virginicus	Virginia Wild Rye	Herb	FACW	2.0			
All Year	Sorghastrum nutans	Indiangrass	Herb	FACU	3.0			
All Year	Bidens aristosa	Showy Tickseed Sunflower	Herb	FACW	1.0			
All Year	Helianthus angustifolia	Narrowleaf Sunflower	Herb	FACW	1.0			
All Year	Coreopsis tinctoria	Plains corepsis	Herb	FAC	1.0			

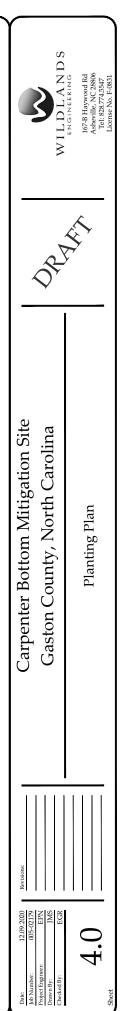
Pure Live Seed (20 lbs/ acre)								
Approved Date	Species Name	Common Name	Stratum	Wetland Indicator	Density (lbs/acro			
All Year	Coleataenia anceps	Beaked Panicgrass	Herb	FAC	3.0			
All Year	Carex vulpinoidea	Fox Sedge	Herb	OBL	2.0			
All Year	Elymus virginicus	Virginia Wild Rye	Herb	FACW	4.0			
All Year	Bidens aristosa	Showy Tickseed Sunflower	Herb	FACW	3.0			
All Year	Panicum cirgatum	Switchgrass	Herb	FAC	3.0			
All Year	Polygonum pensylvanicum	Smartweed	Herb	FACW	1.0			
All Year	Juncus effusus	Common Rush	Herb	OBL	2.0			
All Year	Panicum dichotomiflorum	Smooth Panicgrass	Herb	FACW	2.0			

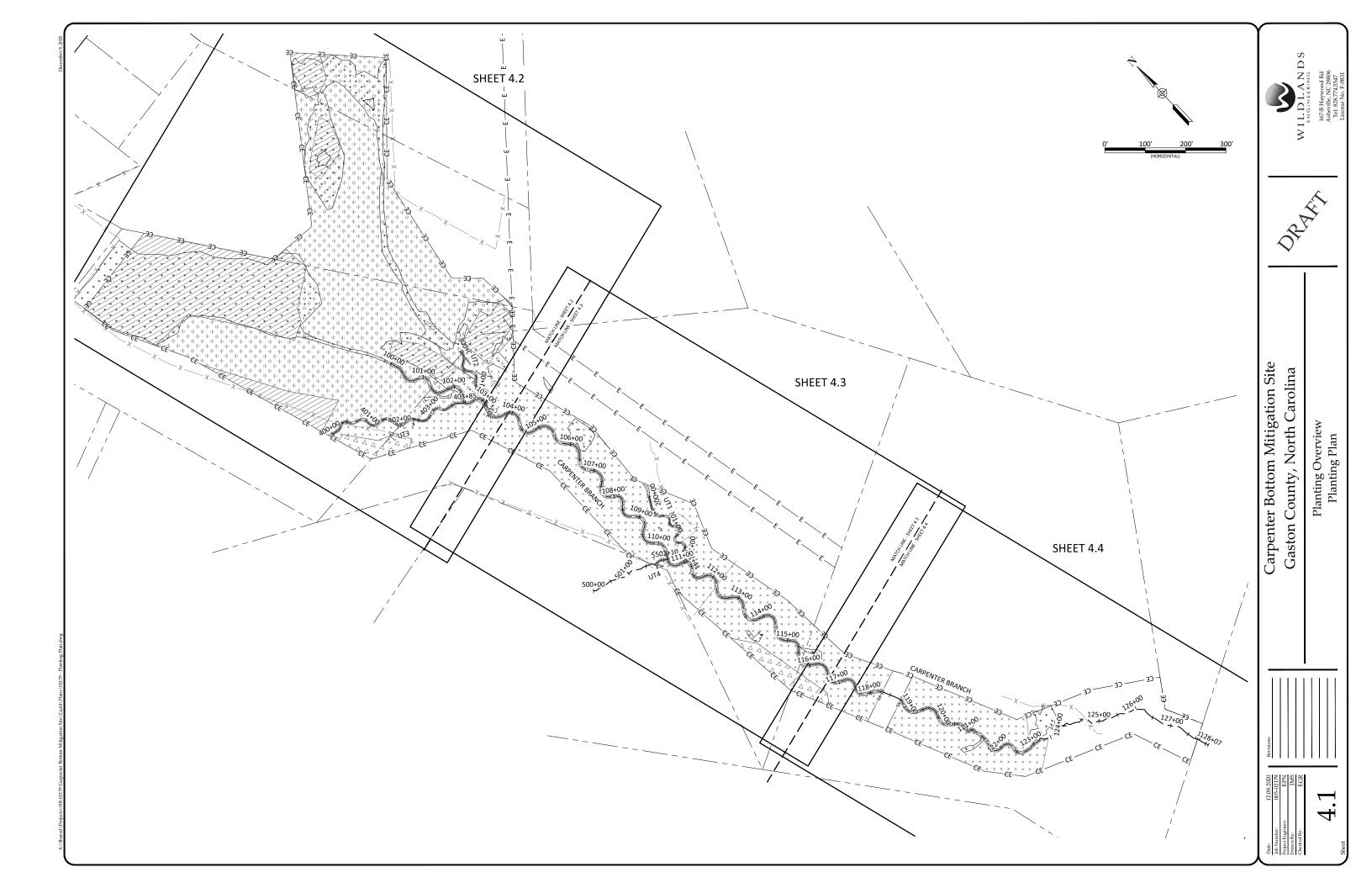
Apply Permanent Riparian seeding in all disturbed areas within Conservation Easement. Apply Permanent seeding in all other disturbed areas per specification.

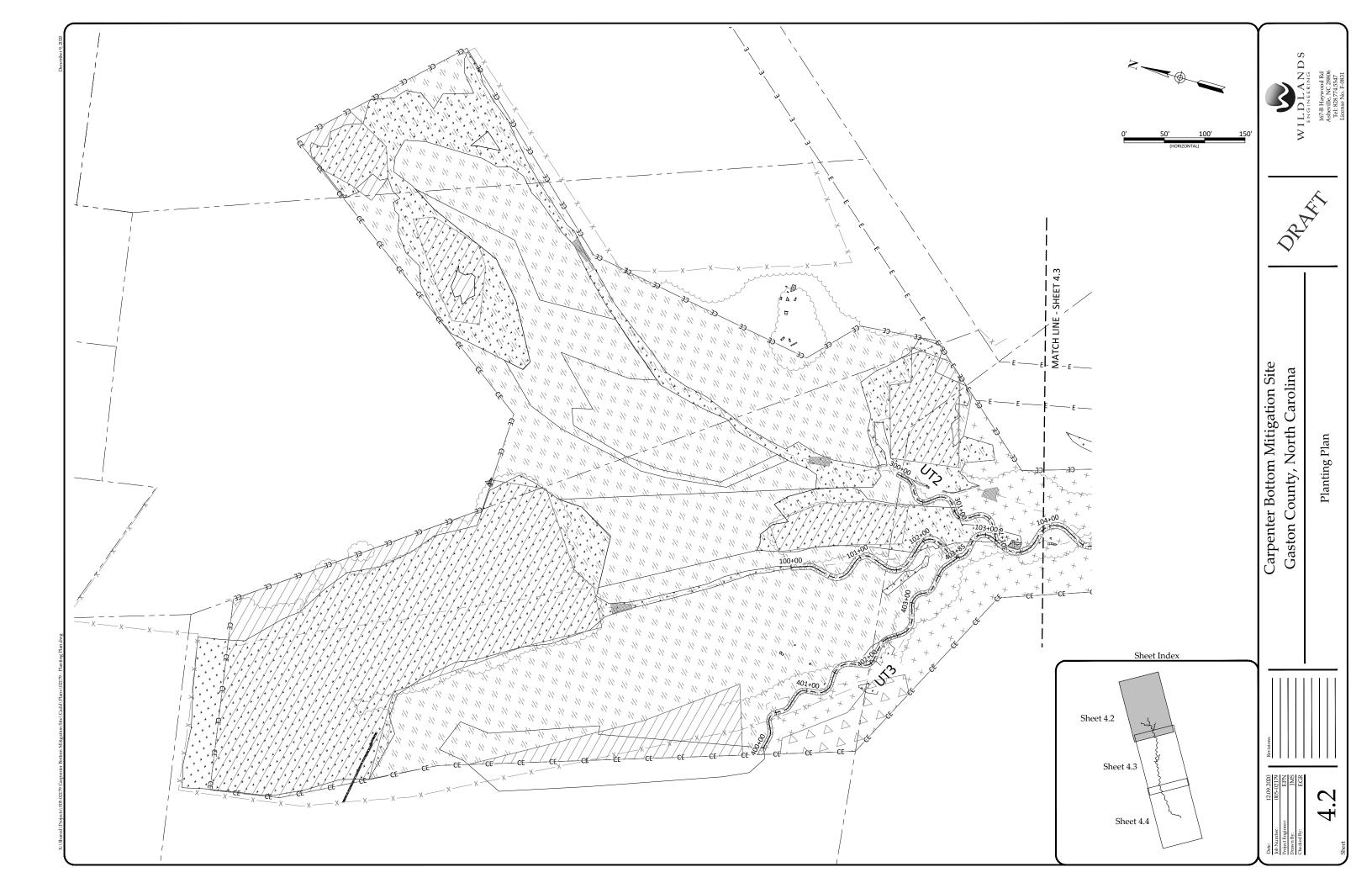
Stabilization Seeding

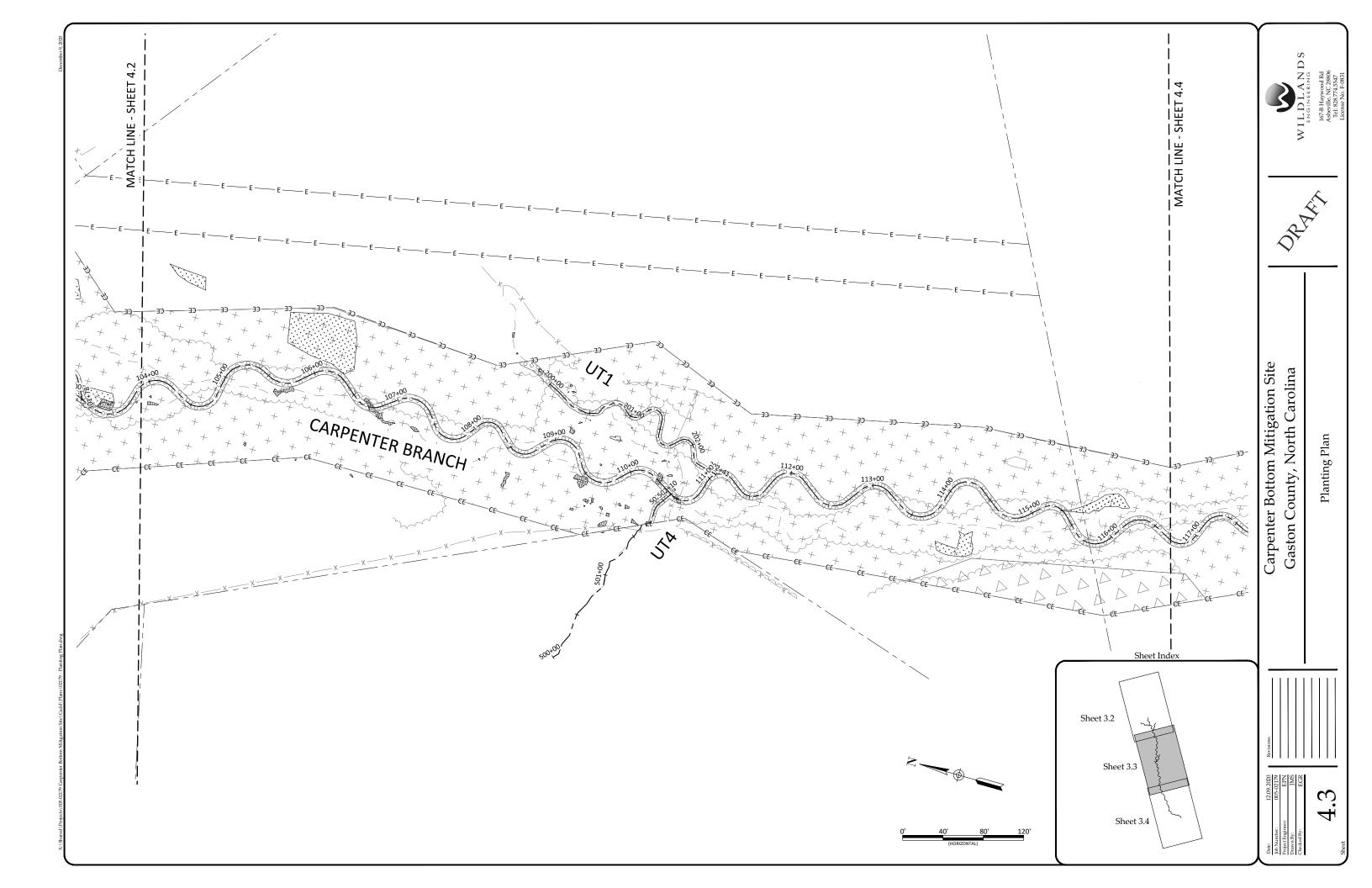
Stabilization Seeding Pure Live Seed (32 lbs/ac)			
Species Name	Common Name	lbs/acre	
Festuca arundinacea	Fescue (KY 31)	20	
Dactylis glomerata	Orchard Grass	12	

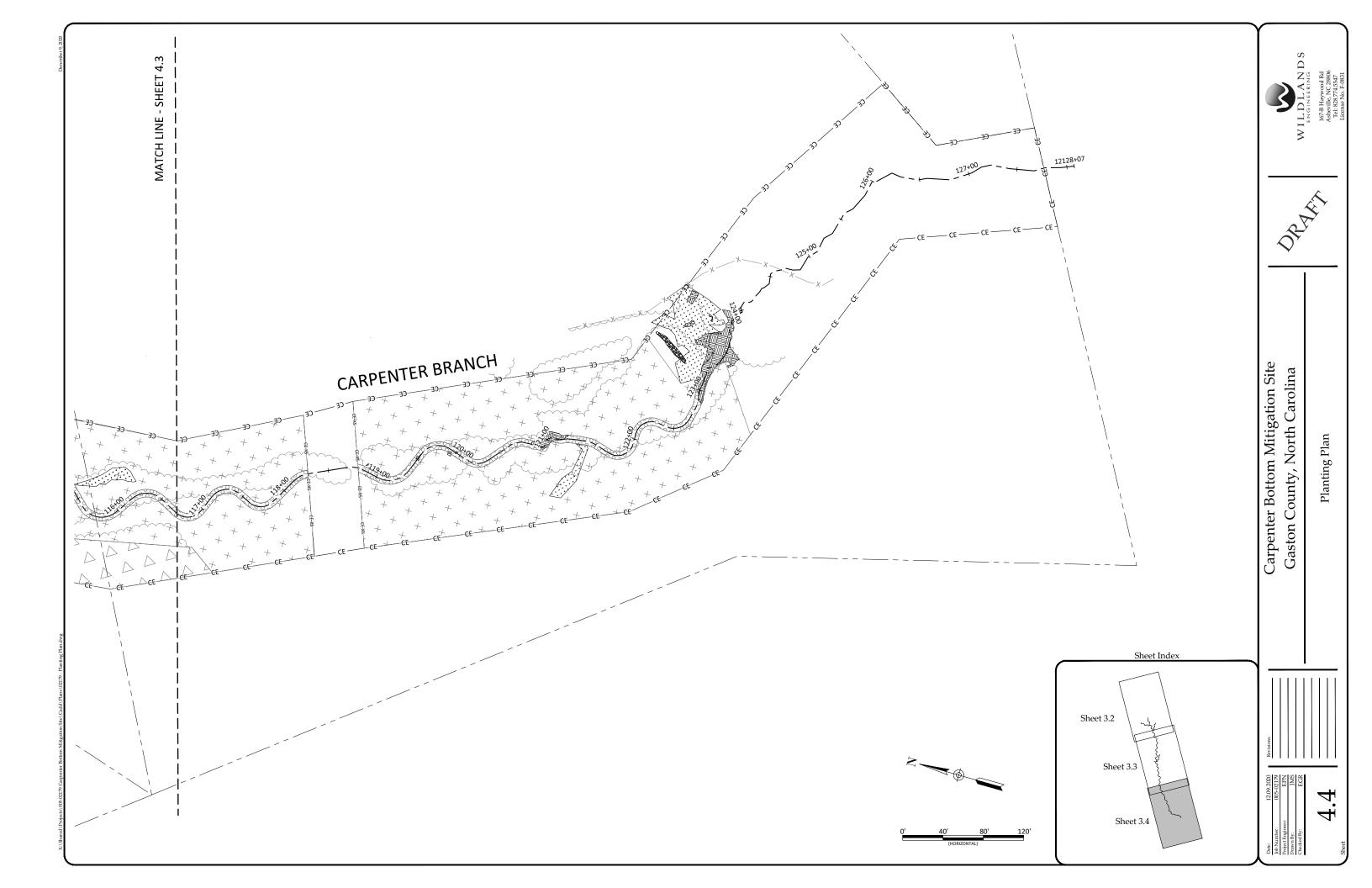
completion of construction.

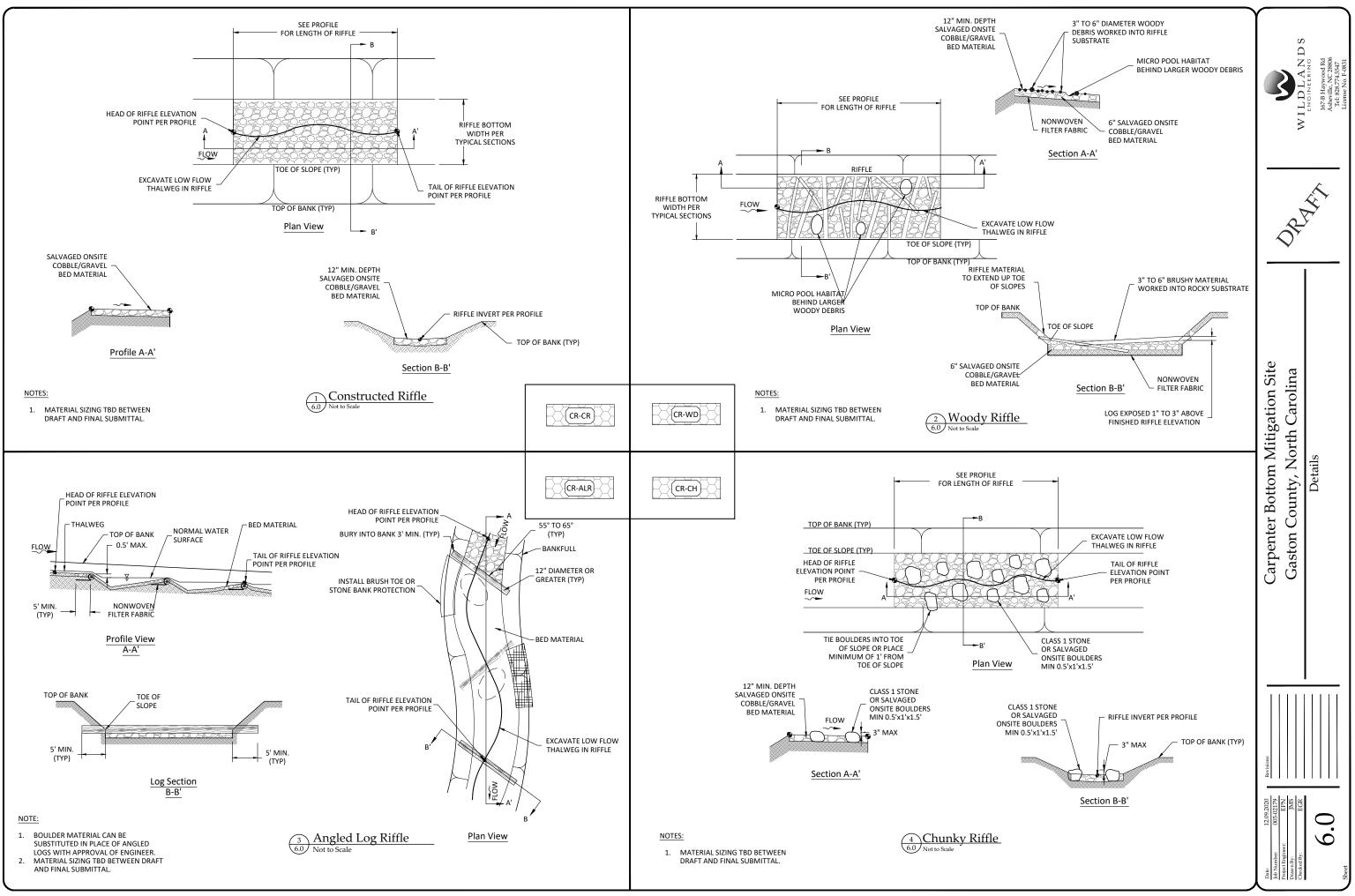

Riparian Corridor Planting (Streambanks)

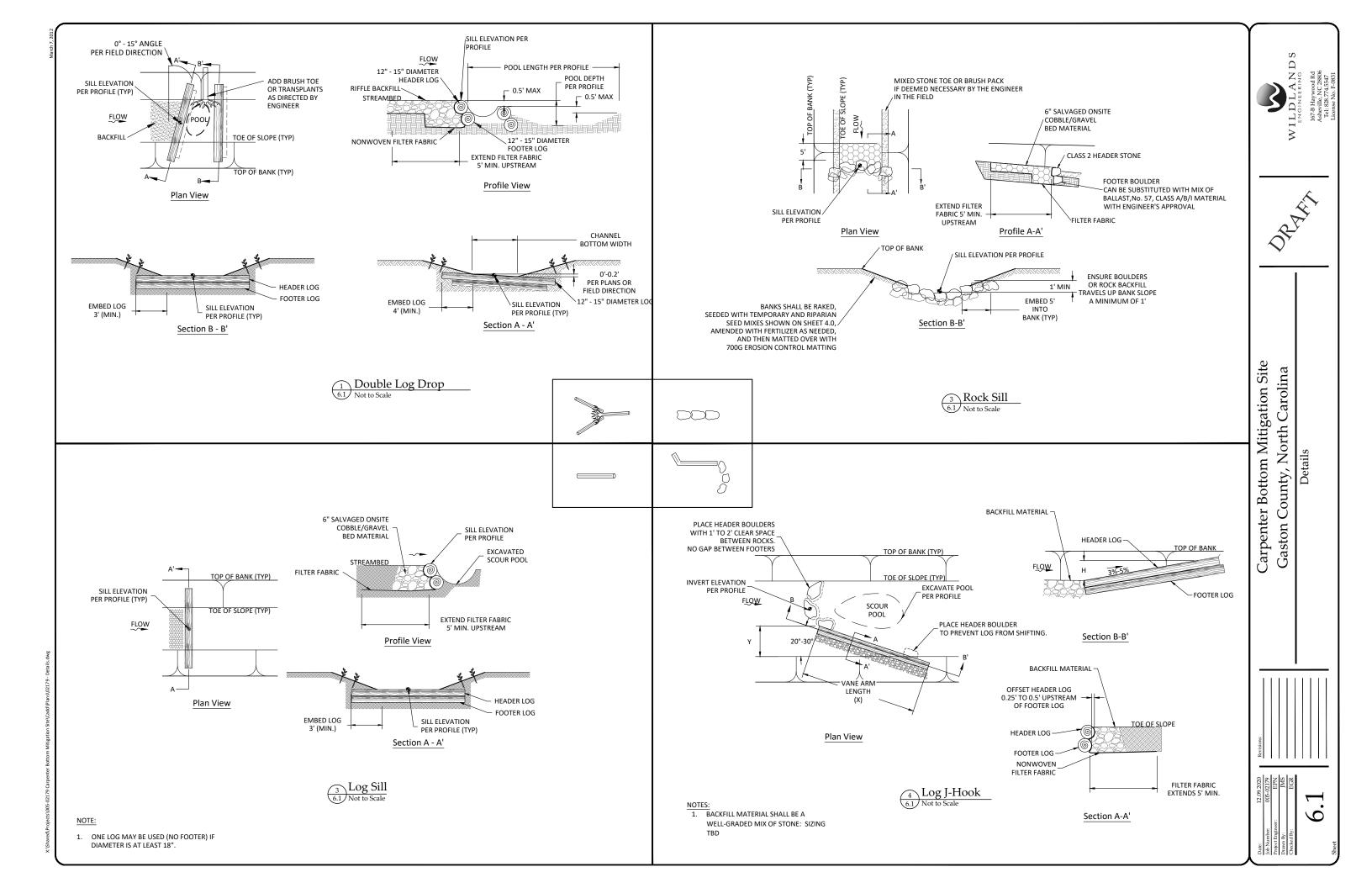

Streambank Planting Zone

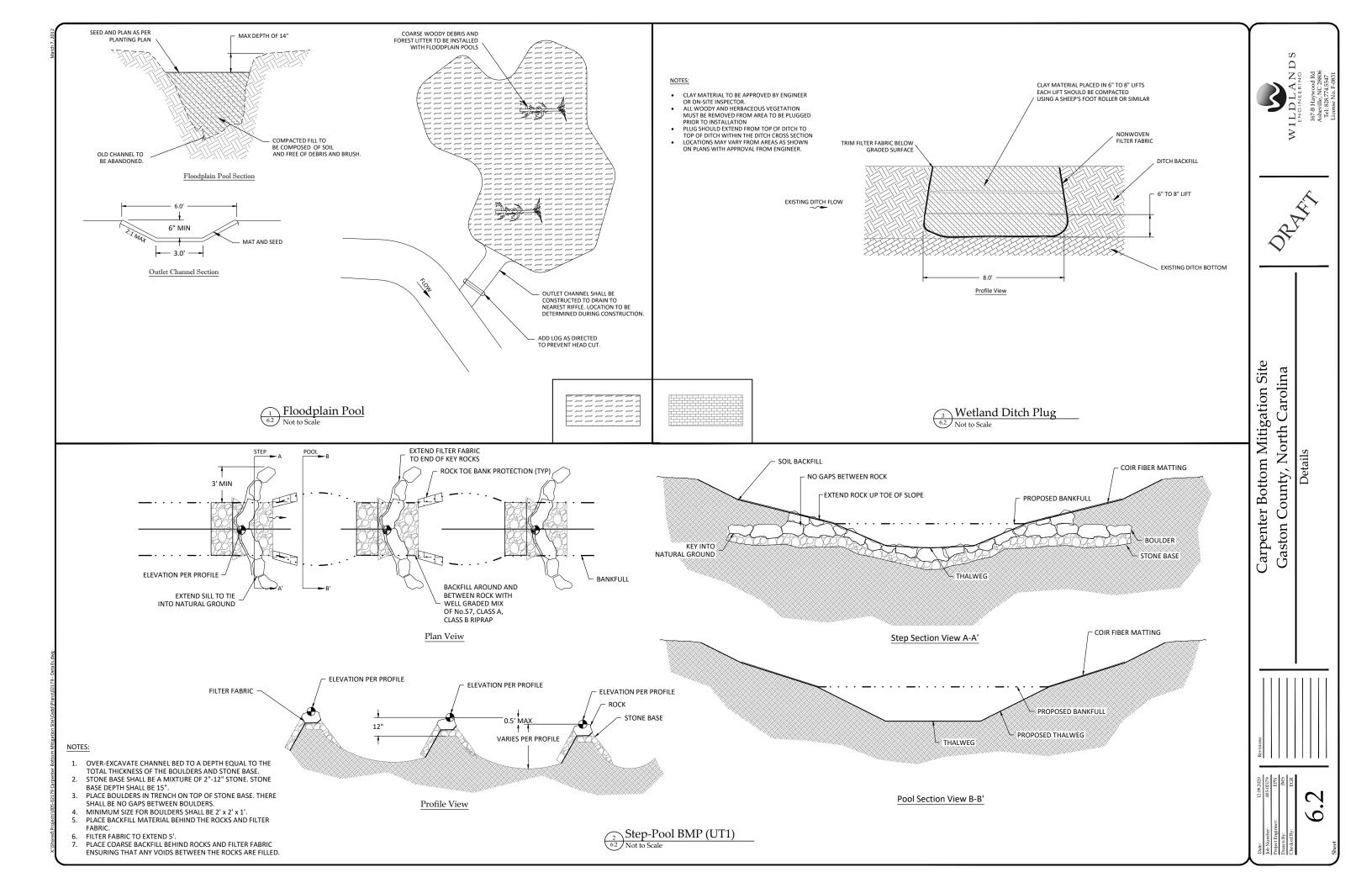

Permanent Seeding

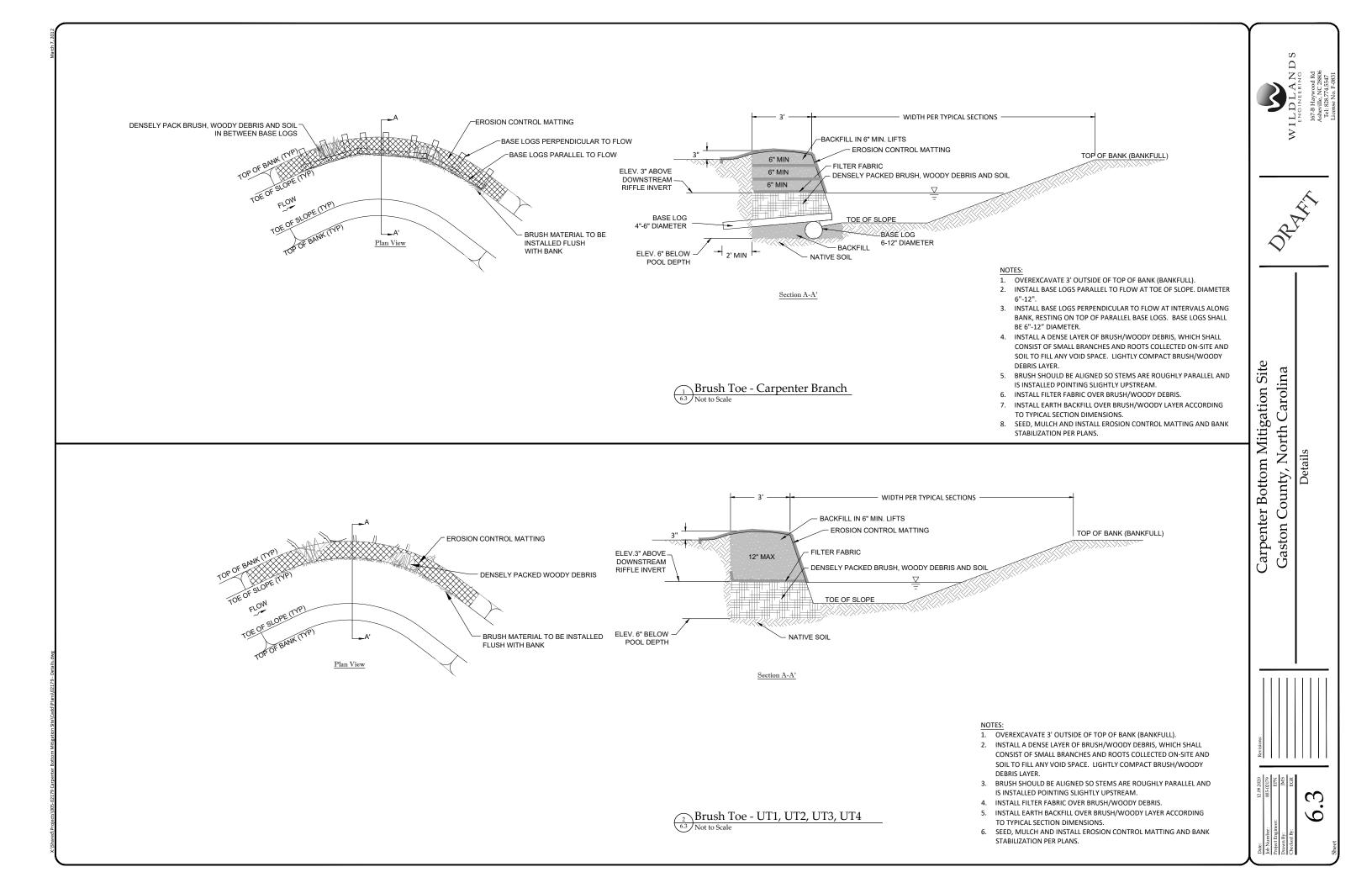

Wetland Seeding - Open Canopy

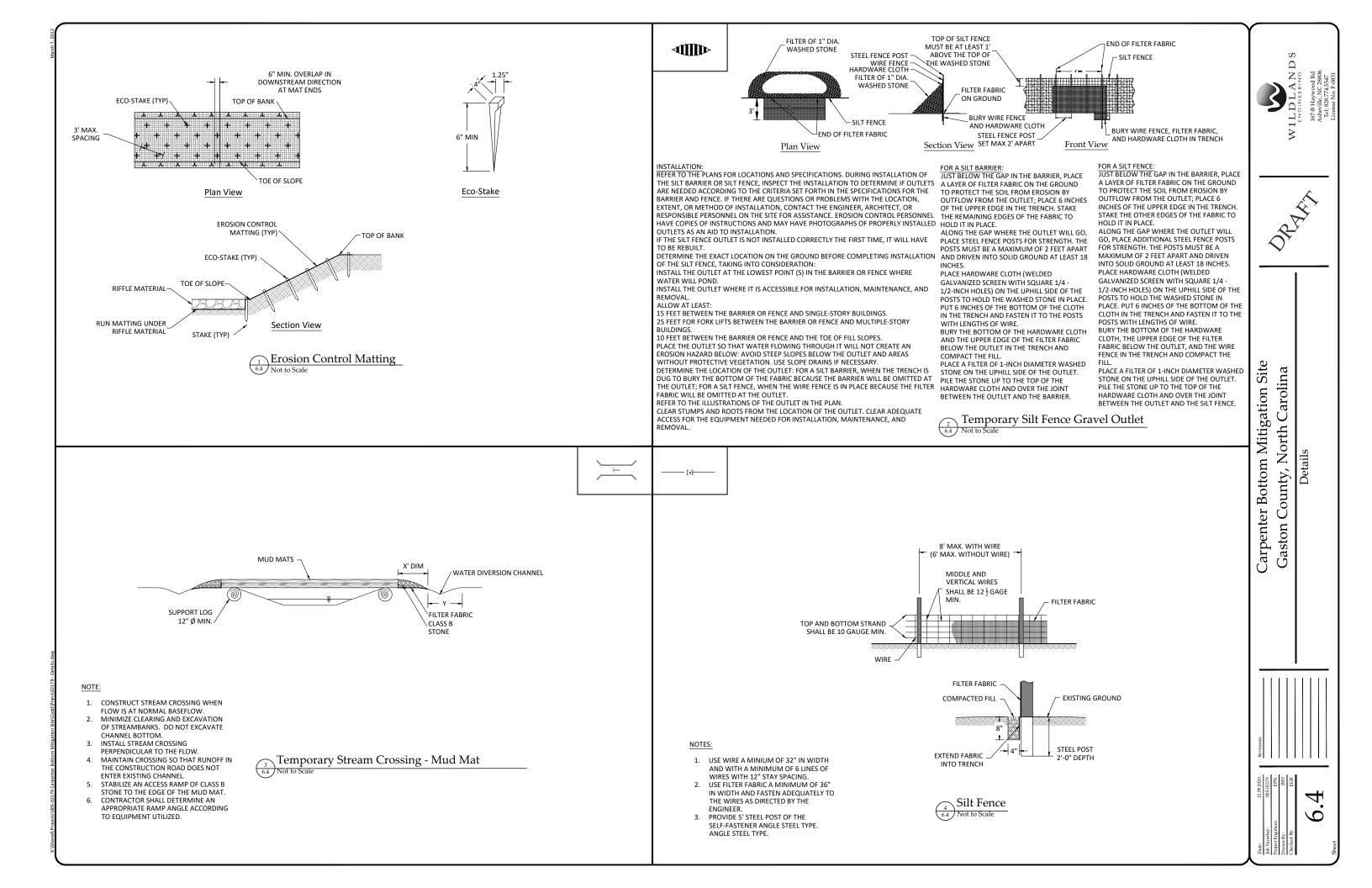

 "STABILIZATION SEEDING" is for areas of disturbance outside conservation easement.
 ground stabilization shall be established within 7 days of grading completion for slopes steeper than 4:1 and within 14 days for slopes 4:1 or flatter. permanent ground cover shall be established for all disturbed areas within 15 working days or 90 calendar days (whichever is shorter) following

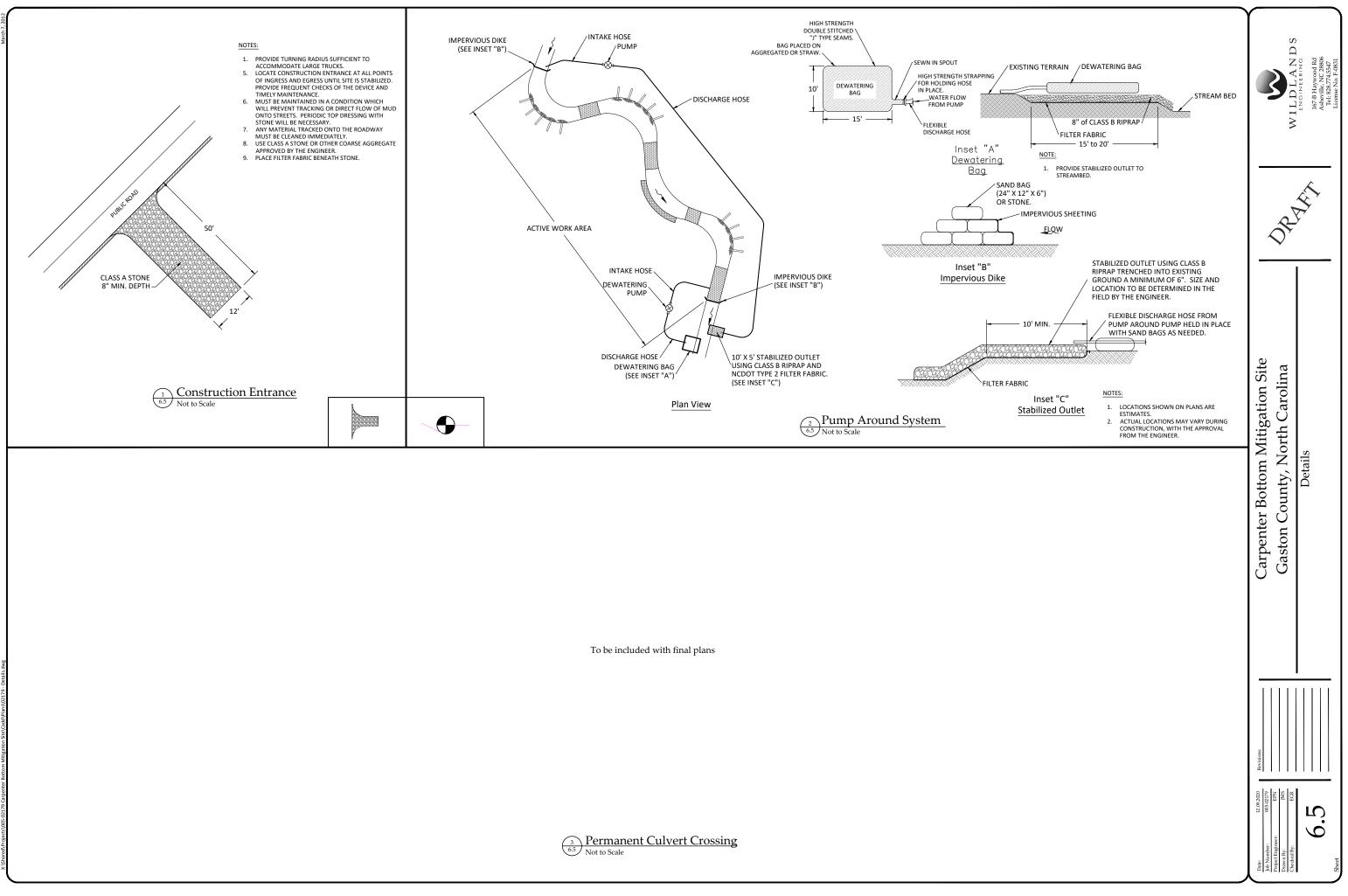


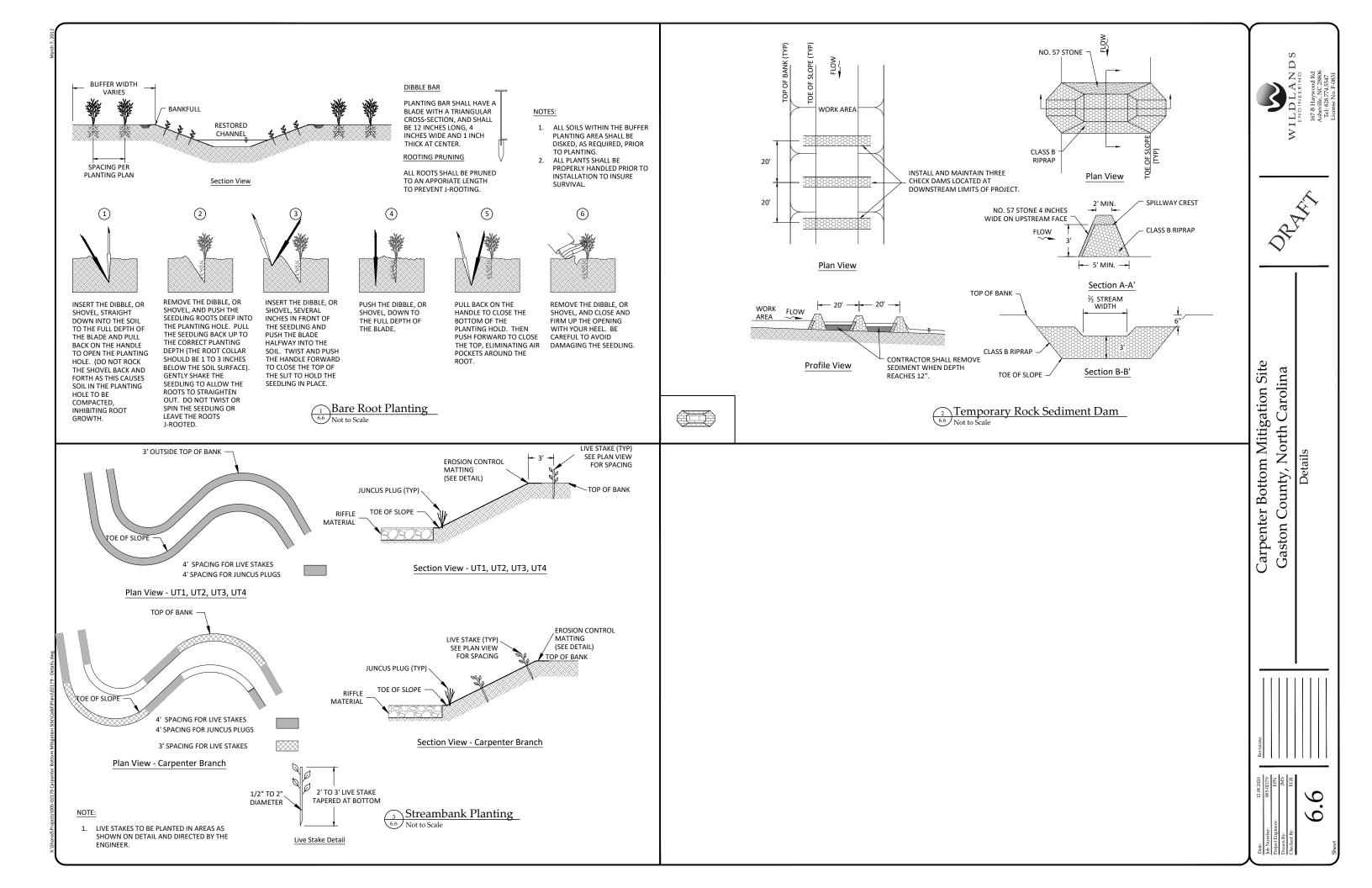


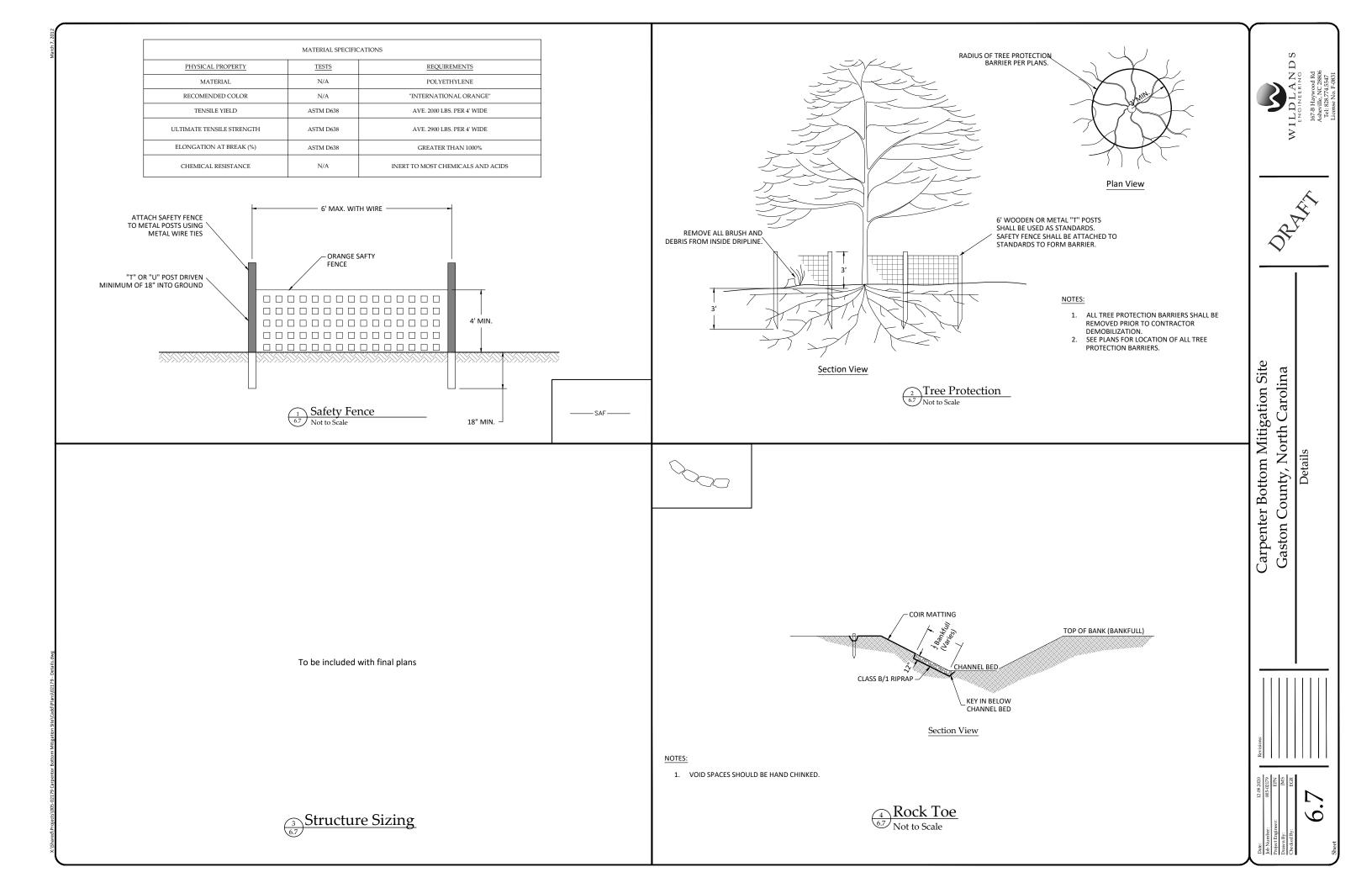












GROUND STABILIZATION AND MATERIALS HANDLING PRACTICES FOR COMPLIANCE WITH HE NCG01 CONSTRUCTION GENERAL PERMIT

nplementing the details and specifications on this plan sheet will result in the constructio activity being considered compliant with the Ground Stabilization and Materials Handling sections of the NCG01 Construction General Permit (Sections E and F, respectively). The ermittee shall comply with the Erosion and Sediment Control plan approved by the delegated authority having jurisdiction. All details and specifications shown on this sheet nay not apply depending on site conditions and the delegated authority having jurisdiction

SECTION E: GROUND STABILIZATION

	Re	equired Ground Stabil	ization Timeframes	
Site Area Description		Stabilize within this many calendar days after ceasing land disturbance	s Timeframe variations	
(a)	Perimeter dikes, swales, ditches, and perimeter slopes	7	None	
(b)	High Quality Water (HQW) Zones	7	None	
(c)	Slopes steeper than 3:1	7	If slopes are 10' or less in length and are not steeper than 2:1, 14 days are allowed	
(d)	Slopes 3:1 to 4:1	14	-7 days for slopes greater than 50' in length and with slopes steeper than 4:1 -7 days for perimeter dikes, swales, ditches, perimeter slopes and HQW Zones -10 days for Falls Lake Watershed	
(e)	Areas with slopes flatter than 4:1	14	 -7 days for perimeter dikes, swales, ditches, perimeter slopes and HQW Zones -10 days for Falls Lake Watershed unless there is zero slope 	

Note: After the permanent cessation of construction activities, any areas with temporary ground stabilization shall be converted to permanent ground stabilization as soon as practicable but in no case longer than 90 calendar days after the last land disturbing activity. Temporary ground stabilization shall be maintained in a manner to render the surface stable against accelerated erosion until permanent ground stabilization is achieved

GROUND STABILIZATION SPECIFICATION

Stabilize the ground sufficiently so that rain will not dislodge the soil. Use one of the echniques in the table below:

Temporary Stabilization	Permanent Stabilization
Temporary grass seed covered with straw or other mulches and tackifiers Hydroseeding Rolled erosion control products with or without temporary grass seed Appropriately applied straw or other mulch Plastic sheeting	 Permanent grass seed covered with straw or other mulches and tackifiers Geotextile fabrics such as permanent soil reinforcement matting Hydroseeding Shrubs or other permanent plantings covered with mulch Uniform and evenly distributed ground cover sufficient to restrain erosion Structural methods such as concrete, asphalt or retaining walls Rolled erosion control products with grass seed

POLYACRYLAMIDES (PAMS) AND FLOCCULANTS

- 1. Select flocculants that are appropriate for the soils being exposed during construction, selecting from the NC DWR List of Approved PAMS/Flocculants.
- Apply flocculants at or before the inlets to Erosion and Sediment Control Measures.
- 3. Apply flocculants at the concentrations specified in the NC DWR List of Approved PAMS/Flocculants and in accordance with the manufacturer's instructions.
- Provide ponding area for containment of treated Stormwater before discharging offsite
- 5. Store flocculants in leak-proof containers that are kept under storm-resistant cover or surrounded by secondary containment structures.

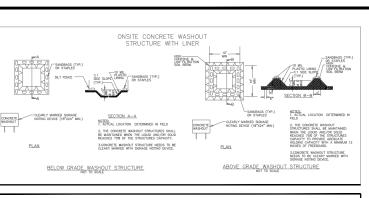
EQUIPMENT AND VEHICLE MAINTENANCE

- 1. Maintain vehicles and equipment to prevent discharge of fluids.
- 2. Provide drip pans under any stored equipment. 3. Identify leaks and repair as soon as feasible, or remove leaking equipment from the
- project. 4. Collect all spent fluids, store in separate containers and properly dispose as
- hazardous waste (recycle when possible)
- Remove leaking vehicles and construction equipment from service until the probler has been corrected.
- Bring used fuels, lubricants, coolants, hydraulic fluids and other petroleum products 6. to a recycling or disposal center that handles these materials.

LITTER, BUILDING MATERIAL AND LAND CLEARING WASTE

- 1. Never bury or burn waste. Place litter and debris in approved waste containers.
- 2. Provide a sufficient number and size of waste containers (e.g dumpster, trash receptacle) on site to contain construction and domestic wastes.
- Locate waste containers at least 50 feet away from storm drain inlets and surface waters unless no other alternatives are reasonably available.
- Locate waste containers on areas that do not receive substantial amounts of runoff from upland areas and does not drain directly to a storm drain, stream or wetland.
- Cover waste containers at the end of each workday and before storm events or 5. provide secondary containment. Repair or replace damaged waste containers. Anchor all lightweight items in waste containers during times of high winds.
- Empty waste containers as needed to prevent overflow. Clean up immediately if 7 containers overflow.
- Dispose waste off-site at an approved disposal facility.
- On business days, clean up and dispose of waste in designated waste containers.

PAINT AND OTHER LIQUID WASTE


- Do not dump paint and other liquid waste into storm drains, streams or wetlands. 2. Locate paint washouts at least 50 feet away from storm drain inlets and surface
- waters unless no other alternatives are reasonably available.
- Contain liquid wastes in a controlled area.
- 4. Containment must be labeled, sized and placed appropriately for the needs of site.
- Prevent the discharge of soaps, solvents, detergents and other liquid wastes from 5. construction sites.

PORTABLE TOILETS

- 1. Install portable toilets on level ground, at least 50 feet away from storm drains, streams or wetlands unless there is no alternative reasonably available. If 50 foot offset is not attainable, provide relocation of portable toilet behind silt fence or place on a gravel pad and surround with sand bags.
- Provide staking or anchoring of portable toilets during periods of high winds or in high foot traffic areas
- Monitor portable toilets for leaking and properly dispose of any leaked material. Utilize a licensed sanitary waste hauler to remove leaking portable toilets and replace with properly operating unit.

EARTHEN STOCKPILE MANAGEMENT

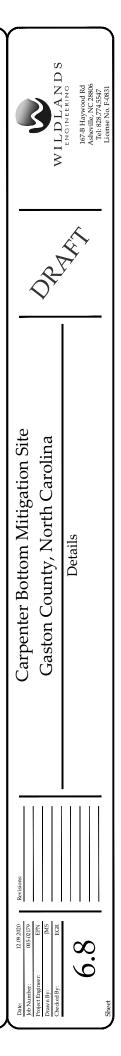
- 1. Show stockpile locations on plans. Locate earthen-material stockpile areas at least 50 feet away from storm drain inlets, sediment basins, perimeter sediment controls and surface waters unless it can be shown no other alternatives are reasonably available.
- Protect stockpile with silt fence installed along toe of slope with a minimum offset of 2. five feet from the toe of stockpile.
- Provide stable stone access point when feasible
- 4. Stabilize stockpile within the timeframes provided on this sheet and in accordance with the approved plan and any additional requirements. Soil stabilization is defined as vegetative, physical or chemical coverage techniques that will restrain accelerated erosion on disturbed soils for temporary or permanent control needs.

CONCRETE WASHOUTS

- 1. Do not discharge concrete or cement slurry from the site. 2. Dispose of, or recycle settled, hardened concrete residue in accordance with local
- and state solid waste regulations and at an approved facility. Manage washout from mortar mixers in accordance with the above item and in addition place the mixer and associated materials on impervious barrier and within lot perimeter silt fence.
- 4. Install temporary concrete washouts per local requirements, where applicable. If an alternate method or product is to be used, contact your approval authority for review and approval. If local standard details are not available, use one of the two types of temporary concrete washouts provided on this detail.
- 5. Do not use concrete washouts for dewatering or storing defective curb or sidewalk sections. Stormwater accumulated within the washout may not be pumped into or discharged to the storm drain system or receiving surface waters. Liquid waste must be pumped out and removed from project.
- 6. Locate washouts at least 50 feet from storm drain inlets and surface waters unless it can be shown that no other alternatives are reasonably available. At a minimum, install protection of storm drain inlet(s) closest to the washout which could receive spills or overflow.
- 7. Locate washouts in an easily accessible area, on level ground and install a stone entrance pad in front of the washout. Additional controls may be required by the approving authority.
- Install at least one sign directing concrete trucks to the washout within the project limits. Post signage on the washout itself to identify this location.
- 9. Remove leavings from the washout when at approximately 75% capacity to limit overflow events. Replace the tarp, sand bags or other temporary structural components when no longer functional. When utilizing alternative or proprietary products, follow manufacturer's instructions.
- 10. At the completion of the concrete work, remove remaining leavings and dispose of in an approved disposal facility. Fill pit, if applicable, and stabilize any disturbance caused by removal of washout.

HERBICIDES, PESTICIDES AND RODENTICIDES

- 1. Store and apply herbicides, pesticides and rodenticides in accordance with label restrictions.
- 2. Store herbicides, pesticides and rodenticides in their original containers with the label, which lists directions for use, ingredients and first aid steps in case of accidental poisoning
- Do not store herbicides, pesticides and rodenticides in areas where flooding is possible or where they may spill or leak into wells, stormwater drains, ground water or surface water. If a spill occurs, clean area immediately.
- Do not stockpile these materials onsite


HAZARDOUS AND TOXIC WASTE

- 1. Create designated hazardous waste collection areas on-site.
- Place hazardous waste containers under cover or in secondary containment.
- - Ground Stabilization and Materials Handling

NCG01 GROUND STABILIZATION AND MATERIALS HANDLING

Do not store hazardous chemicals, drums or bagged materials directly on the ground.

PART III SELF-INSPECTION, RECORDKEEPING AND REPORTING

SECTION A: SELF-INSPECTION

Self-inspections are required during normal business hours in accordance with the table below. When adverse weather or site conditions would cause the safety of the inspection personnel to be in jeopardy, the inspection may be delayed until the next business day on which it is safe to perform the inspection. In addition, when a storm event of equal to or greater than 1.0 inch occurs outside of normal business hours, the self-inspection shall be performed upon the commencement of the next business day. Any time when inspections were delayed shall be noted in the Inspection Record.

Inspect	Frequency (during normal business hours)	Inspection records must include:
(1) Rain gauge maintained in good working order	Daily	Daily rainfall amounts. If no daily rain gauge observations are made during weekend or holiday periods, and no individual day rainfall information is available, record the cumulative rain measurement for those un- attended days (and this will determine if a site inspection is needed). Days on which no rainfall occurred shall be recorded as "zero." The permittee may use another rain-monitoring device approved by the Division.
(2) E&SC Measures	At least once per 7 calendar days and within 24 hours of a rain event \geq 1.0 inch in 24 hours	Identification of the measures inspected, Date and time of the inspection, Name of the person performing the inspection, Indication of whether the measures were operating properly, Description of maintenance needs for the measure, Description, evidence, and date of corrective actions taken.
(3) Stormwater discharge outfalls (SDOs)	At least once per 7 calendar days and within 24 hours of a rain event ≥ 1.0 inch in 24 hours	1. identification of the discharge outfalls inspected, 2. Date and time of the inspection, 3. Name of the person performing the inspection, 4. Evidence of indicators of stormwater pollution such as oil sheen, floating or suspended solids or discoloration, 5. indication of visible sediment leaving the site, 6. Description, evidence, and date of corrective actions taken.
(4) Perimeter of site	At least once per 7 calendar days and within 24 hours of a rain event \geq 1.0 inch in 24 hours	If visible sedimentation is found outside site limits, then a record of the following shall be made: 1. Actions taken to clean up or stabilize the sediment that has left the site limits, 2. Description, evidence, and date of corrective actions taken, and 3. An explanation as to the actions taken to control future releases.
(5) Streams or wetlands onsite or offsite (where accessible)	At least once per 7 calendar days and within 24 hours of a rain event \geq 1.0 inch in 24 hours	 If the stream or wetland has increased visible sedimentation or a stream has visible increased urbidity from the construction activity, then a record of the following shall be made: Description, evidence and date of corrective actions taken, and Records of the required reports to the appropriate Division Regional Office per Part III, Section C, Item (2)(a) of this permit of this permit.
(6) Ground stabilization measures	After each phase of grading	 The phase of grading (installation of perimeter E&SC messures, dearing and grubbing, installation of storm drainage facilities, completion of all land-disturbing activity, construction or redevelopment, permanent ground cover). Documentation that the required ground stabilization measures have been provided within the required timeframe or an assurance that they will be provided as soon as possible.

SELF-INSPECTION, RECORDKEEPING AND REPORTING

SECTION B: RECORDKEEPING

1. E&SC Plan Documentation

The approved E&SC plan as well as any approved deviation shall be kept on the site. The approved E&SC plan must be kept up-to-date throughout the coverage under this permit. The following items pertaining to the E&SC plan shall be documented in the manner described:

Item to Document	Documentation Requirements
(a) Each E&SC Measure has been installed and does not significantly deviate from the locations, dimensions and relative elevations shown on the approved E&SC Plan.	Initial and date each E&SC Measure on a copy of the approved E&SC Plan or complete, date and sign an inspection report that lists each E&SC Measure shown on the approved E&SC Plan. This documentation is required upon the initial installation of the E&SC Measures or if the E&SC Measures are modified after initial installation.
(b) A phase of grading has been completed.	Initial and date a copy of the approved E&SC Plan or complete, date and sign an inspection report to indicate completion of the construction phase.
(c) Ground cover is located and installed in accordance with the approved E&SC Plan.	Initial and date a copy of the approved E&SC Plan or complete, date and sign an inspection report to indicate compliance with approved ground cover specifications.
(d) The maintenance and repair requirements for all E&SC Measures have been performed.	Complete, date and sign an inspection report.
(e) Corrective actions have been taken to E&SC Measures.	Initial and date a copy of the approved E&SC Plan or complete, date and sign an inspection report to indicate the completion of the corrective action.

2. Additional Documentation

In addition to the E&SC Plan documents above, the following items shall be kept on the site and available for agency inspectors at all times during normal business hours, unless the Division provides a site-specific exemption based on unique site conditions that make this requirement not practical:

- (a) This general permit as well as the certificate of coverage, after it is received.
- (b) Records of inspections made during the previous 30 days. The permittee shall record the required observations on the Inspection Record Form provided by the Division or a similar inspection form that includes all the required elements. Use of electronically-available records in lieu of the required paper copies will be allowed if shown to provide equal access and utility as the hard-copy records.
- (c) All data used to complete the Notice of Intent and older inspection records shall be maintained for a period of three years after project completion and made available upon request. [40 CFR 122.41]

PART III SELF-INSPECTION, RECORDKEEPING AN

SECTION C: REPORTING

- Occurrences that must be reported Permittees shall report the following occurrences:

 (a) Visible sediment deposition in a stream or wetland.
- (b) Oil spills if:
- They are 25 gallons or more,
- They are less than 25 gallons but cannot be cleaned of
 They cause sheen on surface waters (regardless of volume)
 - They are within 100 feet of surface waters (regardless of version)
 - .
- (a) Releases of hazardous substances in excess of reportable the Clean Water Act (Ref: 40 CFR 110.3 and 40 CFR 117.3 CFR 302.4) or G.S. 143-215.85.
- (b) Anticipated bypasses and unanticipated bypasses.
- (c) Noncompliance with the conditions of this permit that ma environment.

2. Reporting Timeframes and Other Requirements

After a permittee becomes aware of an occurrence that must appropriate Division regional office within the timeframes ar requirements listed below. Occurrences outside normal bus the Division's Emergency Response personnel at (800) 662-7 733-3300.

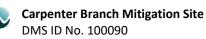
Occurrence	Reporting Timeframes (After Discovery) an
(a) Visible sediment deposition in a stream or wetland	 Within 24 hours, an oral or electronic no Within 7 colendor days, a report that co- sediment and actions taken to address the Division staff may waive the requirement case-by-case basis. If the stream is named on the NC 303(d) related causes, the permittee may be rea monitoring, inspections or apply more sti- determine that additional requirements with the federal or state impaired water
(b) Oil spills and release of hazardous substances per Item 1(b)-(c) above	 Within 24 hours, an oral or electronic ne shall include information about the date location of the spill or release.
(c) Anticipated hypasses [40 CFR 122.41(m)(3)]	 A report at least ten days before the day The report shall include an evaluation of effect of the bypass.
(d) Unanticipated bypasses [40 CFR 122.41(m)(3)]	 Within 24 hours, an oral or electronic no Within 7 colendar days, a report that inc quality and effect of the bypass.
(e) Noncompliance with the conditions of this permit that may endanger health or the environment[40 CFR 122,41(l)[7)]	 Within 24 hours, an oral or electronic no Within 7 colendar days, a report that co noncompliance, and its causes; the perio including exact dates and times, and if the been corrected, the anticipated time nor continue; and steps taken or planned to prevent reoccurrence of the noncomplia Division staff may waive the requirement case-by-case basis.

NCG01 SELF-INSPECTION, RECORDKEEPING AND REPORTING

EFFE

¹ ⁶⁹ Self-inspection, Recordkeeping and Reporting

ND REPORTING	Scine Let HW	V LL L L A IN J E NGINEERING 167-B Haywood Rd Asheville, NC 2886 Tel: 828.774.547
up within 24 hours, olume), or ss of volume). ole quantities under Section 311 of 7.3) or Section 102 of CERCLA (Ref: 40	St.	
may endanger health or the ust be reported, he shall contact the and in accordance with the other usiness hours may also be reported to -7956, (800) 858-0368 or (919) and Other Requirements ic motification. It contains a description of the ess the cause of the deposition ment for a written report on a 3(d) list as impaired for sediment- e required to perform additional re stringent practices if staff ants are needed to assure compliance aters conditions. ic notification. The notification dates, time, nature, volume and a dote of the byposs, if possible m of the anticipated quality and ic notification. It includes an evaluation of the ic notification.	Carpenter Bottom Mitigation Site Gaston County, North Carolina	Details
seried of noncompliance, If the noncompliance has not poncompliance is expected to d to reduce, eliminate, and upliance. [40 CFR 122,41(1)(6]. ment for a written report on a ECTIVE: 04/01/19	Due: 12.09.2020 Job Number: 05.02.79 Project Engineer: EFN Drawn by: JMS Drawn EGR	6.9


APPENDIX 9 Invasive Vegetation Treatment Plan

Appendix 9 Invasive Vegetation Treatment Plan

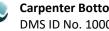
Annual monitoring and semi-annual site visits will be conducted to assess the condition of the finished project. These site inspections may identify the presence of invasive vegetation. If, during the monitoring period, invasive species threaten the survivability of planted woody vegetation in an area that exceeds 1% of the planted easement acreage, the invasive species shall be treated. Smaller areas may be treated at the discretion of the project engineer and biologist, if deemed in the best interest of the Site. Generally, the treatment plan shall follow the below guidelines in Table 1 for common invasive species found in riparian areas; however, the treatment may be changed based on the professional judgement of the project engineer and biologist. For invasive species not listed in the below table that threaten the survivability of the planted woody vegetation, Wildlands shall notify DMS of the invasive species observed and the plan for treatment prior to treating the species. All invasive species treatment will be reported in the following year's monitoring plan.

Invasive Species	Recommended Treatment Technique
Japanese Honeysuckle (<i>Lonicera</i> japonica)	Small infestations of <i>L. japonica</i> can be pulled by hand. Monitor to remove any re-sprouts. Care should be taken to bag and remove the plants, including mature fruits to prevent re- establishment. Large infestations of <i>L. japonica</i> will usually require a combination of cut stump and foliar herbicide treatments. Where vines have grown into the tree canopy, cut stems as close to the ground as possible. Treat the freshly cut surface of the rooted stem with a 25 percent solution of glyphosate or triclopyr. Remove the twining vines to prevent them from girdling and killing desirable vegetation. Groundcovers of <i>L. japonica</i> can be treated with a foliar solution of 2 percent glyphosate or triclopyr plus a 0.5 percent non- ionic surfactant to thoroughly wet all the leaves.
Chinese Privet (<i>Ligustrum</i> <i>sinense</i>)	Thoroughly wet all leaves with one of the following herbicides in water with a surfactant: a glyphosate herbicide as a 3-percent solution (12 ounces per 3-gallon mix) in the late fall or early winter when safety to surrounding vegetation is desired, or elsewhere, Arsenal AC* as a 1-percent solution (4 ounces per 3-gallon mix). Backpack mist blowers can broadcast glyphosate as a 3-percent solution (12 ounces per 3-gallon mix) or Escort XP* at 1 ounce per acre (0.2 dry ounces per 3-gallon mix and 10 gallons per acre) during winter for safety to dormant hardwoods. Summer applications of glyphosate may not be as effective as other times and require a higher percent solution. The best time for Arsenal AC* and Escort XP* is summer to fall. For stems too tall for foliar sprays and when safety to surrounding vegetation is desired, apply a basal spray of Garlon 4 as a 20-percent solution (5 pints per 3-gallon mix) in a labeled basal oil product, vegetable oil or mineral oil with a penetrant, or fuel oil or diesel fuel (where permitted); or undiluted Pathfinder II. Elsewhere, apply Stalker* as a 6- to 9-percent solution (1.5 to 2 pints per 3-gallon mix) in a labeled basal oil product, vegetable oil or mineral oil with a penetrant to young bark as a basal spray making certain to treat all stems in a clump; or cut and immediately treat the stump tops with Arsenal AC* as a 5-percent solution (20 ounces per 3-gallon mix) or Velpar L* as a 10-percent solution in water (1 quart per 3-gallon and Enforcer Brush Killer are effective undiluted for treating cut-stumps. For large stems, make stem injections using Arsenal AC* or when safety to surrounding vegetation is desired, amet for Garlon 3A or a glyphosate herbicide as a 20-percent solution (5 pints per 3-gallon mix) in water with a surfactant. ORTHO Brush-B-Gon and Enforcer Brush Killer are effective undiluted for treating cut-stumps. For large stems, make stem injections using Arsenal AC* or when safety to surrounding vegetation is desired, Garlon 3A or a glyphosate herbicide

Table 1. Invasive Species Treatment – Carpenter Bottom Mitigation Site

Invasive Species	Recommended Treatment Technique
Asian spiderwort (Murdannia keisak)	Foliar treatment of large populations requires 2% aquatic label glyphosate with non-ionic surfactant. Avoid not mechanically remove. Species can spread through fragmentation. Treat upon emergence in early summer into early fall before seed set.
Hardy orange (Poncirus trifoliata)	Foliar treatment of large populations requires 4% glyphosate solution or Garlon 3A (triclopyr) with non-ionic surfactant. Cut treatment with 25% aquatic label glyphosate or Garlon 3A (triclopyr). Saplings treatment require Garlon 4 (3A for aquatic) with 20% in oil with penetrant or Pathfinder II undiluted (non-aquatic). Treat year round, avoid spreading fruits in fall.
Multiflora rose (Rosa multiflora)	Foliar treatment of large populations with 4% glyphosate solution. Cut stump treatment is time consuming, though effective. Treat in spring/summer.

APPENDIX 10 Maintenance Plan


Appendix 10 Maintenance Plan

.

.

The site shall be visited semi-annually and a physical inspection of the site shall be conducted a minimum of once per year throughout the post-construction monitoring period until performance standards are met. These site inspections may identify site components and features that require routine maintenance. Routine maintenance should be expected most often in the first two years following site construction and may include the following:

Component/ Feature	Maintenance through project close-out		
Stream	Routine channel maintenance and repair activities may include chinking of in-stream structures to prevent piping, securing of loose coir matting, and supplemental installations of live stakes and other target vegetation along the channel – these shall be conducted where success criteria are threatened or at the discretion of the Designer. Areas where storm water and floodplain flows intercept the channel may also require maintenance to prevent bank failures and head-cutting. Beaver activity will be monitored and beaver dams on project streams will typically be removed, at the discretion of the Designer, during the monitoring period to allow for bank stabilization and stream development outside of this type of influence.		
Wetlands	Routine wetland maintenance and repair activities may include supplemental installations of target vegetation within the wetland. Areas where storm water and floodplain flows intercept the wetland may also require maintenance to prevent scour that adversely and persistently threatens wetland habitat or function.		
Vegetation	Vegetation shall be maintained to ensure the health and vigor of the targeted community. Routine vegetation maintenance and repair activities may include supplemental planting, pruning, mulching, and fertilizing. Invasive plant species requiring treatment per the Invasive Species Treatment Plan (Appendix 9) shall be treated in accordance with that plan and with NC Department of Agriculture (NCDA) rules and regulations.		
Site boundary	Site boundaries shall be identified in the field to ensure clear distinction between the mitigation site and adjacent properties. Boundaries may be identified by fence, marker, bollard, post, tree-blazing, or other means as allowed by site conditions and/or conservation easement. Boundary markers disturbed, damaged, or destroyed will be repaired and/or replaced on an as-needed basis.		

APPENDIX 11 Credit Release Schedule

Appendix 11 - Credit Release Schedule and Supporting Information

All credit releases will be based on the total credit generated as reported by the as-built survey of the mitigation site. Under no circumstances shall any mitigation project be debited until the necessary Department of the Army (DA) authorization has been received for its construction or the District Engineer (DE) has otherwise provided written approval for the project in the case where no DA authorization is required for construction of the mitigation project. The DE, in consultation with the Interagency Review Team (IRT), will determine if performance standards have been satisfied sufficiently to meet the requirements of the release schedules below. In cases where some performance standards have not been met, credits may still be released depending on the specifics of the case. Monitoring may be required to restart or be extended, depending on the extent to which the site fails to meet the specified performance standard. The release of project credits will be subject to the criteria described as follows:

Credit Release Milestone	Monitoring Year	Credit Release Activity	Interim Release	Total Released
1	0	Site Establishment	0%	0%
2	0	Completion of all initial physical and biological improvements made pursuant to the Mitigation Plan – see requirements below	30%	30%
3	1	Year 1 monitoring report demonstrates that channels are stable and interim performance standards have been met	10%	40%
4	2	Year 2 monitoring report demonstrates that channels are stable and interim performance standards have been met	10%	50%
5	3	Year 3 monitoring report demonstrates that channels are stable and interim performance standards have been met	10%	60%
6	4*	Year 4 monitoring report demonstrates that channels are stable and interim performance standards have been met	5%	65% (75%**)
7	5	Year 5 monitoring report demonstrates that channels are stable and interim performance standards have been met	10%	75% (85%**)
8	6*	Year 6 monitoring report demonstrates that channels are stable and interim performance standards have been met	5%	80% (90%**)
9	7	Year 7 monitoring report demonstrates that channels are stable and interim performance standards have been met	10%	90% (100%**)

Table A: Credit Release Schedule – Strea	m Credits – Carnenter	r Bottom Mitigation Site
Table A. Cleuit Release Schedule – Stiea	in Cieulis – Cuipentei	Dollon willigation site

*Vegetation data may not be required with monitoring reports submitted during these monitoring years unless otherwise required by the Mitigation Plan or directed by the NCIRT.

**10% reserve of credits to be held back until the bankfull event performance standard has been met

Credit Release Milestone	Monitoring Year	Credit Release Activity	Interim Release	Total Released
1	0	Site Establishment	0%	0%
2	0	Completion of all initial physical and biological improvements made pursuant to the Mitigation Plan – see requirements below	30%	30%
3	1	Year 1 monitoring report demonstrates that interim performance standards have been met	10%	40%

Credit Release Milestone	Monitoring Year	Credit Release Activity	Interim Release	Total Released
4	2	Year 2 monitoring report demonstrates that interim performance standards have been met	10%	50%
5	3	Year 3 monitoring report demonstrates that interim performance standards have been met	15%	65%
6	4*	Year 4 monitoring report demonstrates that interim performance standards have been met	5%	70%
7	5	Year 5 monitoring report demonstrates that interim performance standards have been met	15%	85%
8	6*	Year 6 monitoring report demonstrates that interim performance standards have been met	5%	90%
9	7	Year 7 monitoring report demonstrates that interim performance standards have been met	10%	100%

*Vegetation data may not be required with monitoring reports submitted during these monitoring years unless otherwise required by the Mitigation Plan or directed by the NCIRT.

1.1 Initial Allocation of Released Credits

For this NCDMS project, no initial release of credits is provided. To account for this, the 15% credit release typically associated with the site establishment is held until completion of all initial physical and biological improvements made pursuant to the Mitigation Plan. In order for NCDMS to receive the 30% release (shown in Tables A and B as Milestone 2), they must comply with the credit release requirements stated in Section IV(I)(3) of the approved NCDMS instrument.

1.2 Subsequent Credit Releases

All subsequent credit releases must be approved by the DE, in consultation with the IRT, based on a determination that required performance standards have been achieved.

The following conditions apply to credit release schedules:

- a. A reserve of 10% of site's total stream credits will be release after four bankfull events have occurred, in separate years, provided the channel is stable and all other performance standards are met. In the event that less than four bankfull events occur during the monitoring period, release of these reserve credits is at the discretion of the NCIRT.
- b. After the second milestone, the credit releases are scheduled to occur on an annual basis, assuming that the annual monitoring report has been provided to the USACE in accordance with Section IV (General Monitoring Requirements) of this document, and that the monitoring report demonstrates that interim performance standards are being met and that no other concerns have been identified on-site during the visual monitoring. All credit releases require written approval from the USACE.
- c. The credits associated with the final credit release milestone will be released only upon a determination by the USACE, in consultation with the NCIRT, of functional success as defined in the Mitigation Plan.

As projects approach milestones associated with credit release, the DMS will submit a request for credit release to the DE along with documentation substantiating achievement of criteria required for release to occur. This documentation will be included with the annual monitoring report.

APPENDIX 12 Financial Assurances

Appendix 12 - Financial Assurances

Pursuant to Section IV H and Appendix III of the Division of Mitigation Service's In-Lieu Fee Instrument dated July 28, 2010, the North Carolina Department of Environment and Natural Resources has provided the US Army Corps of Engineers Wilmington District with a formal commitment to fund projects to satisfy mitigation requirements assumed by DMS. This commitment provides financial assurance for all mitigation projects implemented by the program.

APPENDIX 13 Meeting Minutes

CREDITING UPDATE AND IRT MEETING MINUTES

MEETING:	Post Contract IRT Site Visit
	CARPENTER BOTTOM Mitigation Site
	Catawba River Basin 03050103 (expanded service area); Gaston County, NC
	NCDEQ Contract No. 7731
	Wildlands Project No. 005-02179
DATE:	Wednesday, January 16, 2019, 9:30 am
LOCATION:	Gaston-Webbs Chapel Road
	Lincolnton, NC 28092

Attendees

Todd Tugwell, USACE Paul Wiesner, Division of Mitigation Services (NCDMS) Matthew Reid, NCDMS Melonie Allen, NCDMS Kirsten Ullman, NCDMS Mac Haupt, NC Department of Environmental Quality Shawn Wilkerson, Wildlands Engineering Eric Neuhaus, Wildlands Engineering

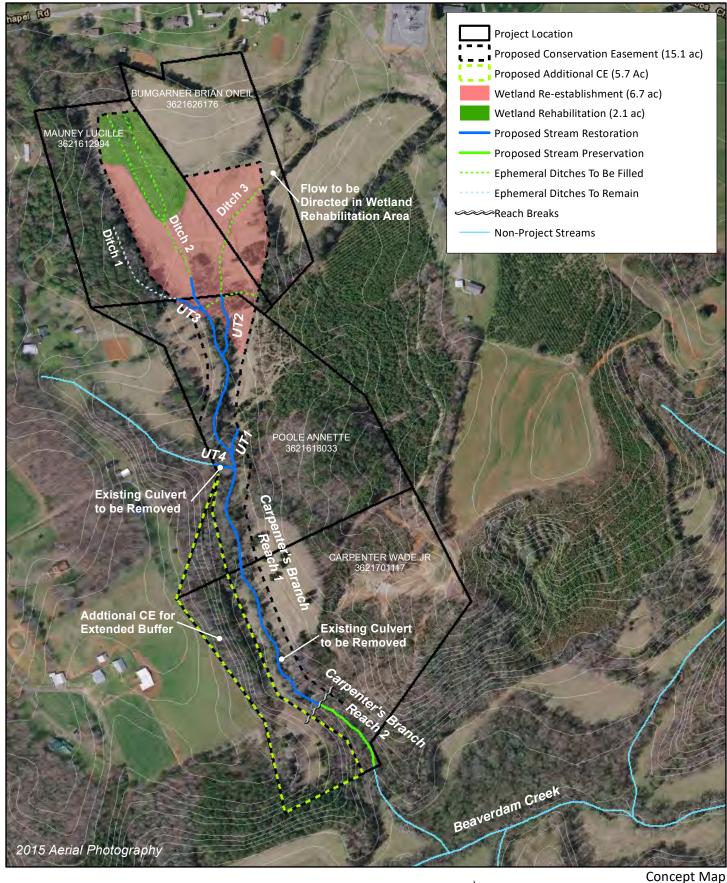
Materials

• Wildlands Engineering Technical Proposal 8/10/2018 in response to NCDMS RFQ 09132018

Meeting Notes

- 1. Wildlands gave a brief site overview before the walk which discussed stream and wetland approach and general site conditions.
- 2. The group entered the proposed wetland re-establishment area from the northeast field adjacent to Ditch 3 as shown on the attached concept map. Wildlands was asked about plans for Ditch 3 and it was noted that the ditch would be filled within the proposed wetland re-establishment area. Upstream of the proposed wetland re-establishment area, drainage from Ditch 3 will be directed into the wetland to support hydrology.
- 3. Soil borings were taken towards the eastern edge of the proposed wetland re-establishment area. The consensus from the group was that site soils were depleted with a low chroma, consistent with the Licensed Soil Scientist (LSS) investigation included with the proposal. Site soils were deemed suitable for the proposed wetland restoration at the surface.
- 4. The walk continued into the proposed wetland rehabilitation area, where two headwater ditches were observed, and soils were double checked for consistency. A rehabilitation approach was discussed

including plugging of the existing drainage ditches, treatment of invasive vegetation (including but not limited to hardy orange, Chinese privet, and white pine trees), wetland plantings, and cattle exclusion. IRT members noted that a jurisdictional delineation will need to be done to verify the wetland rehabilitation boundary, but overall, they agreed with the approach. Soils observed within the rehabilitation area were consistent with previous soil borings taken within the re-establishment area.


- 5. Fish and Wildlife noted that there is potential habitat for a stream specific crayfish and dwarf flowered heartleaf species on-site. Neither of these species was observed during the site walk but Wildlands noted that they would look for these specific species as part of the categorical exclusion and threatened and endangered species walks.
- 6. A soil boring was taken within the wetland re-establishment area west of Ditch 2 shown on the attached concept map. Soils were consistent with other observations on site and were deemed appropriate for wetland re-establishment at the surface.
- 7. Overall, IRT members agreed with the proposed wetland restoration approach and proposed ratios of 1:1 for areas of wetland re-establishment and 1.5:1 for areas of wetland rehabilitation.
- 8. Wildlands will prioritize getting the jurisdictional delineation completed within the proposed wetland rehabilitation area. Additionally, Wildlands will install groundwater gages throughout the wetland restoration area prior to the 2019 growing season.
- 9. The walk continued south toward the headwater tributaries of Carpenter's Branch. IRT and NCDMS representatives were shown the approximate location of intermittent and perennial stream calls based on field mapping. It was discussed that these calls would be further refined as the project moved forward, but generally intermittent and perennial calls presented in the proposal were agreed upon.
- 10. Ditch 1 shown on the attached concept map was discussed in detail. Wildlands current proposed approach was to install channel plugs at various locations upstream of the intermittent call to redirect drainage back into the adjacent proposed wetland area. It was noted that if the channel was deemed jurisdictional above the current field call, Wildlands would either restore or enhance the channel and include it within the proposed conservation easement.
- 11. The site walk continued to the headwaters and ultimately down the entire length of Carpenter's Branch. Wildlands originally proposed all streams on-site including headwater tributaries, the entire length of Carpenter's Branch, and UT1 for an enhancement II approach at a 2.5:1 credit ratio. After field observations and discussions with the IRT, it was determined that the streams on-site need to be fully restored using a priority I approach until an existing bedrock portion of the channel, which will be proposed for a preservation approach. The change in approach results in an increase in proposed stream credits from 1,224 in the proposal to 3,370. A re-issued concept map and detailed credit table is included with these meeting minutes.
- 12. It was noted that a current culvert crossing over an unnamed tributary from the right floodplain (now UT4 on the attached concept map) will be removed as part of the project. The portion of UT4 within the proposed conservation easement will be restored and tied to the proposed alignment of Carpenter's Branch as part of the project.
- 13. IRT members noted that a flow gage will need to be installed along UT1 to document continuity of flow for the project reach, regardless of stream approach.
- 14. In addition to restoring Carpenter's Branch with a Priority I restoration approach, Wildlands agreed that they would discuss putting the additional property (approximately 5.7 acres) on the right floodplain of Carpenter's Branch within the proposed conservation easement with the property owner. This would allow for an extended buffer along the right floodplain of Carpenter's Branch and allow Wildlands to eliminate the proposed 30' internal culvert crossing shown in the proposal.
- 15. The IRT noted that the site could be a prime candidate for benthic and water quality monitoring with a potential associated 2% to 4% credit bonus if property monitoring was carried out.

	Stream Credits						
Reach	Management Objectives	Proposal Mitigation Approach	Revised Mitigation Approach	Length (feet)	Ratio	Mitigation Credits (No Expanded Buffer)	Mitigation Credits ¹ (With Expanded Buffer)
Carpenter's Branch Reach 1	Restore with Priority 1 restoration including appropriate dimension, pattern, and profile. Reconnect stream to its relic floodplain, increase bedform diversity through the installation of instream structures, and stabilize bed and banks. Exclude cattle, treat invasive vegetation, and plant a native riparian community. Eliminate an existing culvert crossing along the proposed reach.	Enhancement II	Restoration	2,400	1:1	2,400	2,506
Carpenter's Branch Reach 2	Exclude cattle, treat invasive vegetation, and plant a native riparian community.	Enhancement II	Preservation	431	5:1	86	96
UT1	Restore with Priority 1 restoration including appropriate dimension, pattern, and profile. Reconnect stream to its relic floodplain, increase bedform diversity through the installation of instream structures, and stabilize bed and banks. Exclude cattle, treat invasive vegetation, and plant a native riparian community.	Enhancement II	Restoration	120	1:1	120	120
UT2	Restore with Priority 1 restoration including appropriate dimension, pattern, and profile. Reconnect stream to its relic floodplain, increase bedform diversity through the installation of instream structures, and stabilize bed and banks. Exclude cattle, treat invasive vegetation, and plant a native riparian community.	Enhancement II	Restoration	372	1:1	372	372
UT3	Restore with Priority 1 restoration including appropriate dimension, pattern, and profile. Reconnect stream to its relic floodplain, increase bedform diversity through the installation of instream structures, and stabilize bed and banks. Exclude cattle, treat invasive vegetation, and plant a native riparian community.	Enhancement II	Restoration	216	1:1	216	216
UT4	Restore with Priority 1 restoration including appropriate dimension, pattern, and profile. Reconnect stream to its relic floodplain, increase bedform diversity through the installation of instream structures, and stabilize bed and banks. Exclude cattle, treat invasive vegetation, and plant a native riparian community. Eliminate an existing culvert crossing along the proposed reach.	Enhancement II	Restoration	60	1:1	60	60
			Total	3,599		3,254 Stream Credits (Cool)	3,370 Stream Credits (Cool)

Wetland Credits						
Reach	ReachManagement ObjectivesMitigationApproach		Acres	Ratio	Mitigation Credits	
Wetland Re- establishment	Restore wetland hydrology by eliminating drainage ditches. Re-establish appropriate wetland community by planting native tree species. Increase ponding by eliminating vegetative maintenance and increasing surface roughness throughout the proposed wetland area. Reduce sediment and nutrient inputs via cattle exclusion.	Wetland Re- establishment	6.7	1:1	6.7	
Wetland Rehabilitation	Restore wetland hydrology by eliminating drainage ditches. Further promote appropriate wetland community through supplemental planting of native tree species and through elimination of invasive species. Reduce sediment and nutrient inputs via cattle exclusion.	Wetland Re- habilitation	2.1	1.5:1	1.4	
	·	Total	8.8		8.1 Riparian Wetland Credits	

0 200 400 Feet

A

ψ

Concept Map Post Contract IRT Site Walk Carpenter Bottom Mitigation Site Catawba River Basin 03050102

Gaston County, NC

March 13, 2019

Ms. Kristie Corson NCDEQ-Division of Mitigation Services 217 West Jones Street, Suite 3000A Raleigh, NC 27603

RE: Contract Amendment Request – Carpenter Bottom Mitigation Site Gaston County DEQ Contract Number 7731 NCDMS Project Number 100090 RFQ #09132018 Located in Catawba 03050102 for mitigation credit in Catawba 03050103 (within the expanded service area) Federal Tax ID 56 0651376

Dear Ms. Corson:

Wildlands proposes to amend the existing contract for Stream and Wetland Credits on our Carpenter Bottom Mitigation Site (Site) based on the NC DMS and Interagency Review Team (IRT) walk on 1/16/2019. Included with this letter is a proposed concept map, revised credit table with current stream approach, the proposed amount to be added to the contract based on additional crediting, an updated Task/Project Milestone Table, and the post contract IRT meeting minutes. The below table details the existing and proposed contract assets and values.

Based on the change in stream crediting and previous contract pricing, Wildlands anticipates the Carpenter Bottom Mitigation Site contract will total \$1,758,875.00, of which \$15,000.00 has already been paid based on the Task A invoice submitted by Wildlands on 11/20/2018.

Carpenter Bottom Mitigation Site						
Existing and Proposed Contract Assets and Values						
Original Contract Current Contract Proposed Contract						
Stream Credits	1,224	1,224	3,229			
Cost/Stream Credit	\$375	\$375	\$375			
Wetland Credits	8.2	8.2	8.2			
Cost/Wetland Credit	\$65,000	\$65,000	\$65,000			
¹ Contract Amendment No 1	N/A	\$15,000	\$15,000			
Total Contract Value \$992,000 \$1,007,000 \$1,758,875						
1. Amendment No. 1 increased the original contract by \$15,000 to cover payments for Task A: Technical Approach/Signed Option Agreement(s) Suitable Real Property Documentation						

The below table reflects the revised task/project milestone deliverable schedule.

Project Milestone	Proposed Completion Date (Original NTP issued on 7/25/2017)	Payment Contract Value	Proposed Contract Payment
Task A: Technical Approach/Signed Option Agreement(s)/Suitable Real Property Documentation	Invoiced – November 20, 2018	\$15,000	\$15,000
Task 1. Categorical Exclusion Document	June 1, 2019	5%	\$87,193.75
Task 2. Submit Recorded Conservation Easement on the Site	May 1, 2020	20%	\$348,775.00
Task 3. Mitigation Plan (Final Draft) and Financial Assurance	May 1, 2020	15%	\$261,581.25
Task 4. Mitigation Site Earthwork Completed	December 1, 2020	15%	\$261,581.25
Task 5. Mitigation Site Planting & Installation of Monitoring Devices	February 1, 2021	10%	\$174,387.50
Task 6. Baseline Monitoring Report (Including As- Built Drawings) Approved by DMS	April 1, 2021	10%	\$174,387.50
Task 7. Submit Monitoring Report #1 to DMS*	December 31, 2021	5%	\$87,193.75
Task 8. Submit Monitoring Report #2 to DMS*	December 31, 2022	2%	\$34,877.50
Task 9. Submit Monitoring Report #3 to DMS*	December 31, 2023	2%	\$34,877.50
Task 10. Submit Monitoring Report #4 to DMS*	December 31, 2024	2%	\$34,877.50
Task 11. Submit Monitoring Report #5 to DMS*	December 31, 2025	2%	\$34,877.50
Task 12. Submit Monitoring Report #6 to DMS*	December 31, 2026	2%	\$34,877.50
Task 13. Submit Monitoring Report #7 to DMS* and complete Close-Out Process	December 31, 2027	10%	\$174,387.50
		Total	\$1,758,875.00

*Meets success criteria (schedule progression and payment values have been developed assuming that the site credits meet success criteria each monitoring year)

If you have any questions or concerns regarding this correspondence, please contact me at (704) 332-7754 x 102.

Sincerely,

Shawn Wilkerson, Principal swilkerson@wildlandseng.com, 704-332-7754 ext. 100

CC: Paul Wiesner, NCDEQ-DMS

Enclosures: Concept Figure

Post Contract IRT Meeting Minutes from 1/16/2019

	Stre	am Credits				
Reach	Management Objectives	Proposal Mitigation Approach	Revised Mitigation Approach	Length (feet)	Ratio	Mitigation Credits (No Expanded Buffer)
Carpenter's Branch Reach 1	Restore with Priority 1 restoration including appropriate dimension, pattern, and profile. Reconnect stream to its relic floodplain, increase bedform diversity through the installation of instream structures, and stabilize bed and banks. Exclude cattle, treat invasive vegetation, and plant a native riparian community. Replace an existing culvert crossing along the proposed reach.	Enhancement II	Restoration	2,375	1:1	2,375
Carpenter's Branch Reach 2	Exclude cattle, treat invasive vegetation, and plant a native riparian community.	Enhancement II	Preservation	431	5:1	86
UT1	Restore with Priority 1 restoration including appropriate dimension, pattern, and profile. Reconnect stream to its relic floodplain, increase bedform diversity through the installation of instream structures, and stabilize bed and banks. Exclude cattle, treat invasive vegetation, and plant a native riparian community.	Enhancement II	Restoration	120	1:1	120
UT2	Restore with Priority 1 restoration including appropriate dimension, pattern, and profile. Reconnect stream to its relic floodplain, increase bedform diversity through the installation of instream structures, and stabilize bed and banks. Exclude cattle, treat invasive vegetation, and plant a native riparian community.	Enhancement II	Restoration	372	1:1	372
UT3	Restore with Priority 1 restoration including appropriate dimension, pattern, and profile. Reconnect stream to its relic floodplain, increase bedform diversity through the installation of instream structures, and stabilize bed and banks. Exclude cattle, treat invasive vegetation, and plant a native riparian community.	Enhancement II	Restoration	216	1:1	216
UT4	Restore with Priority 1 restoration including appropriate dimension, pattern, and profile. Reconnect stream to its relic floodplain, increase bedform diversity through the installation of instream structures, and stabilize bed and banks. Exclude cattle, treat invasive vegetation, and plant a native riparian community. Eliminate an existing culvert crossing along the proposed reach.	Enhancement II	Restoration	60	1:1	60
Total				3,599		3,229 Stream Credits (Cool)